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Abstract 

The aim of this paper is to examine the impact of price changes on children’s 

consumption of sugar sweetened beverages. Using micro-level panel data obtained from a 

stated preference experiment, we specify a two-sided censoring semi-parametric demand 

system model with fixed effects. To overcome an estimation difficulty which is potentially a 

common issue to all applications studying micro-level consumption data, we propose a new 

consistent two-step estimation framework. The economic restrictions implied by consumption 

theory are imposed through a consistent and asymptotically efficient GMM estimator. We 

analyse the consumption behaviour of subjects through estimated expenditure and price 

elasticities. The partial elasticities of demand with respect to attributes of soft drinks are also 

examined. Our results show that the compensated own-price elasticities for Fizzy, Juice and 

Cordial are respectively -0.755, -0.100 and -0.811, and therefore, are all price-inelastic. All 

compensated cross-price elasticities are positive, suggesting net substitutes. While most 

average cross-drink effects of attributes are not statistically significant, we do observe on 

average, Fizzy being diet significantly increases its consumption by 27.8%. Being presented 

together with diet Cordial increases the consumption of Fizzy by 15.4% than otherwise. 

Healthier fizzy (no added colours or preservatives) significantly crowds out the consumption 

of juice. And, being present together with either diet Fizzy or Juice with no added sugar 

increases Cordial consumption than otherwise. To better inform policy, we also estimate our 

model respectively for rich and poor sub-samples, and our results highlight substantial 

discrepancies between their consumption behaviours  

Key words: sugar sweetened beverages, consumption behaviour, panel data, demand system, 

censoring 
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1. Introduction 

 

Consumption of sugar sweetened beverages (SSBs) exhibits strong associations with weight 

gain, obesity, and dental caries, especially in young children and for children of low socio-

economic status (Malik, Schulze, and Hu 2006). These problems affect about one-third of 

children of pre-school age, with 13% of children aged 2-3 years old consuming SSBs every 

day (Wake et al. 2006; Dubois et al. 2007). 

There are strong arguments, and numerous examples, of taxes on SSBs (Brownell and 

Frieden 2009). The use of taxes to improve population health is controversial. The evidence 

of a net welfare gain is mixed, and depends on the effects on the consumption of other foods 

and beverages (Sharma et al. 2014). Arguments as to whether such taxes are regressive 

depend on how the price elasticity of demand varies across sub-groups of the population 

(Sharma et al. 2014). Recent previous studies of the impact of taxation on consumption have 

either estimated average price elasticities (e.g. Finkelstein et al. 2013, Zhen et al. 2014, 

Briggs et al. 2013), or have examined heterogeneity amongst moderate and high consumers 

(Etilé and Sharma 2015) or different income groups (Sharma et al. 2014). Examining the 

impact of changes in price on high risk populations is therefore important in examining the 

overall effectiveness of taxation on population health. 

The aim of this paper is to examine the impact of price changes on children’s 

consumption of SSBs. We examine price and cross-price elasticities across SSBs. Usual 

datasets use household scanner data or aggregated data for small areas and so do not have 

information on the consumption of SSBs by children within households due to aggregation. 

Data disaggregated to below household level is generally not available. We use unique micro-

data from a stated preference experiment administered to parents of children from a birth 
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cohort study of 500 children (de Silva-Sanigorski et al. 2011). Stated preference experiments 

use hypothetical choices of goods to examine the impact of prices and other characteristics on 

choices.  

Unlike stated preference discrete choice experiments which focus on choosing one good 

from several alternatives, our consumption experiment was designed to capture, first, the 

number of bottles of cordial, fruit juice and fizzy drink bought for the household, conditional 

on their price and other characteristics. Second, respondents were asked how many glasses of 

each were consumed by children in the household. This provides a continuous measure of 

consumption suited to analysis using a demand system approach that allows for i) the 

possibility that no soft drinks are consumed at all, ii) censoring (zero consumption of at least 

one SSB conditional on that the total consumption on all soft drinks is positive), iii) panel 

data (multiple scenarios per respondent). We also therefore contribute to the literature on the 

analysis of stated preference experiments. A particular advantage of such an experiment is 

that prices are presented to respondents exogenously. In addition, an experimental design is 

used to ensure that the variation in the attributes is orthogonal and that standard errors are 

minimised. 

To study our unique experimental consumption data, a new semi-parametric fixed-

effects censored demand system is proposed. To deal with the estimation difficulty arising 

from the possibility that no soft drinks are consumed at all, which is potentially a common 

issue to all applications studying micro-level consumption data, a two-step estimation 

strategy is developed. The application of such a semi-parametric fixed-effects censored 

demand system and two-step estimation framework is not exclusive to the experimental data 

of this study. It can actually be extensively applied to any micro-consumption panel data, 

such as household scanner data which have seen a growing number of applications in the 

recent consumption behaviour and marketing literature (such as Sharma et al. 2014, 
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Andreyeva, Long, and Brownell 2010, Zhen et al. 2011, Kim, Allenby, and Rossi 2002, to 

just name a few), to build a demand system to examine the consumption for a bundle of very 

detailed goods, such as Fizzy, Juice and Cordial in this study. It is not clear in the existing 

literature how to deal with possible zero observations on total expenditure and this study is an 

attempt to fill this gap.  

The plan of this paper is set out as follows. Section II introduces the consumption 

experiment and describes the data. Section III presents the model specification and estimation 

strategy. The estimation results and corresponding discussions are given in Section IV. The 

last section concludes this paper.  

 

2. A consumption experiment and data 

 

The consumption experiment (CE) consists of presenting survey respondents, the parents of 

24-month-old children in the SPLASH study (de Silva-Sanigorski et al. 2011), with a series 

of hypothetical scenarios about the quantities of alternative drink types for their family’s and 

children’s consumption. The CE is a labelled design, where respondents choose consumption 

levels for four broad categories of drinks: Fizzy Drink, Juice, Cordial and Tap Water. The 

soft drink categories are characterised by four attributes: price, sugar content, added vitamins 

and no added colours or preservatives. The tap water category is not described by any 

attributes. 

We undertook an extensive pre-piloting phase with in-depth interviews of 32 families to 

develop the four labelled drink categories, the attributes of the drinks, and the nature of the 

choice task. The pre-pilot was an iterative process, where initial designs were drafted, 
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presented to potential respondents during interviews, and attributes and labels were refined 

before being presented again to potential respondents. This process broadly followed the 

recommendations of Coast et al. (2012) in that we avoided describing the latent construct (eg 

“the drink is tasty” or “the drink is healthy”), used in-depth interviews and broadly followed a 

constant-comparative approach to qualitative data collection and analysis. More details of the 

qualitative approaches used are detailed in de Silva-Sanigorski et al. (2011) and Hoare et al. 

(2014). 

The choice context, attributes and levels were informed by three considerations. Firstly, 

some attributes were of particular policy interest, including price and sugar content of drinks. 

Secondly, we conducted an investigation of the websites of major Australian supermarket 

chains. This was a key step as it enabled us to ensure the hypothetical choices were as close 

as possible to real-world choices that parents would be making whilst shopping for drinks. 

Thirdly, all of our decisions were informed, verified and modified from the iterative process 

of the qualitative interviews. 
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Figure 1 Two examples of the shopping scenarios in the consumption experiment 

 

To be a bit more specific, this consumption experiment features soft-drink consumption 

related questions across several hypothetical shopping scenarios. Figure 1 illustrates two 

examples of these hypothetical scenarios. As shown in the examples, the consumption 

experiment is set in the context of the main ‘family shop’ (e.g. Saturday shop in a 

supermarket). It was recognised in qualitative work that young children’s drink consumption 

was particular to context and was particularly idiosyncratic out of the household (on trips or 

visiting friends and family) and on special occasions (Hoare et al. 2014), however it would be 

difficult to model consumption in all of these alternative contexts comprehensively. The 

regular family shop provides a well-understood context which accounts for a large proportion 

of a child’s drink intake. 

The design takes into account that the supermarket shop typically involves a choice of 

drinks for the family, not just for the child. So, for example, a large bottle of juice could be 

bought with the intention of providing drinks for adults and older children in the household as 
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well as for young children. For this reason we ask responding parents to make two sequential 

consumption choices in each scenario: first they must decide how many bottles of each soft 

drink to buy for the week for the whole family; secondly, they must decide how many glasses 

of each drink they would give to their young child to drink for the week. 

The four categories of drinks (fizzy drink, juice, cordial and tap water) were chosen as 

the most common broad categories of drinks given to young children. A decision was made 

early to exclude milk and milk-based drinks as they form a separate category of drinks which 

can be consumed for nutritional reasons. Tap water is included as a labelled drink category 

but is not described by the attributes. We assume tap water is regarded as free of charge and 

homogeneous to the families. The other three drink types can be described by all four 

attributes: price, sugar content, added vitamins, and no added colours or preservatives. 

When choosing consumption levels for the family for each drink category, the 

respondent chooses the number of bottles of drink. We specify two-litre sized bottles as 

informed by the investigation of common Australian supermarket websites. For the choice of 

consumption for the child, we specify 250 millilitre glasses, for all four drink categories, 

including water. 

Price is a key determinant of choice, displayed prominently in supermarkets, mentioned 

by interviewees as determining their choice and is of policy and academic interest. The three 

price levels chosen, $0.90, $2.95, and $4.98 per two litre bottle were designed to cover the 

full range of prices encountered in supermarkets.  

The sugar content attribute is another key policy attribute in the study. The attribute has 

only two levels, ‘Diet-No Sugar’ or blank, implying ‘with sugar’. We chose this wording to 

match real-life labelling of drinks, ‘Diet’ or ‘No Sugar’ or very similar variants were used on 

the packaging of sugar free drinks, whereas highly sugar sweetened drinks were not labelled 



7 

 

with regard to sugar content. One exception to this wording was for the ‘Juice’ drinks 

category, for which we used the wording ‘No added sugar’ instead of ‘Diet-No Sugar’, again 

matching the labelling most often used in supermarkets. The final two binary attributes 

represent common health claims made by soft drink labels: “Extra vitamins A and C” and 

“No added colours or preservatives”. Each of these attributes is blank when there are no extra 

vitamins or when there may be added colours or preservatives. Also, as you can see in Figure 

1, the attributes and prices of the three soft drinks vary across scenarios. If a drink boasts a 

certain attribute, for instance if in a scenario the fizzy drink features extra vitamins, then the 

extra vitamins label is shown on the bottle; otherwise, it is blank. This is exactly what 

happens in the real world, because most retailers tend to only advertise good aspects of their 

commodities.  

In sum, the experiment consists of five attributes, three (sugar, vitamins and colour or 

preservative attributes) with two levels and two (soft drink type and price) with three levels 

giving 
3 22 3 72   possible alternatives. Balancing statistical efficiency considerations, 

practical survey issues and minimising the demands on respondents, we choose to present 

each respondent with 9 shopping scenarios of three choice alternatives (juice, fizzy drink, 

cordial) and the tap water alternative. We produce four versions of the survey, allowing us to 

include 9x3x4=108 alternatives in total in four versions of the survey (each with 27 

alternatives). 

Our approach to producing the experimental design following the pre-piloting stage is in 

two stages: First we conduct a pilot study, estimating simple models with the data obtained. 

Secondly, we use the results from the pilot study as ‘priors’ to inform the design of the 

questionnaire in our main study in order to maximise statistical efficiency. This general 

approach follows the recent literature in stated preference discrete choice experiments (e.g. 
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Scott et al. 2013 and Sivey et al. 2012 are recent examples; Huber and Zwerina 1996 and 

Carlsson and Martinsson 2003 were seminal application in marketing and in health 

economics). 

The experimental design is based on a multinomial logit model of drink choice. We 

specify a linear indirect utility function in which all attributes enter utility in an additive and 

separable manner. An initial orthogonal design was piloted among 35 responding families 

(giving 314 observations). The data from this pilot were analysed using a simple multinomial 

logit. We generated the final design by minimizing the D-error in the multinomial logit model, 

using the prior values from the pilot study results, to produce 36 choice scenarios of three 

choices (fizzy drink, juice, cordial) across the four versions. Each choice set in the survey 

also contained the ‘tap water’ choice alternative. Respondents were randomly allocated to 

one of the four blocks of choice sets in the questionnaire. 

In the final panel data set, there are 282 parents whose consumption choices for their 

pre-school children are observed for 9 hypothetical shopping scenarios which are different in 

terms of attributes and prices of soft drinks. Hence, there are in total 2538 observations in our 

sample when laid out as one long cross-section, 78 of which contain missing values and are 

excluded from the sample. 

3. Model Specification and Two-step Estimation Strategy 

 

3.1 Model specification  

 

This paper specifies a demand system to jointly study the soft-drink consumption data 

gathered from the SPLASH consumption experiment. In particular, we are interested in how 

changes in prices and attributes would affect parents’ consumption decisions for their 
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children. The demand system literature features modelling the demand of goods in budget 

share form on goodness of fit grounds, which also helps avoid heteroscedasticity (Leser 

1963). The obvious difficulty with using budget share form is that for respondents who do not 

give their children any of the three soft drinks their total expenditure on soft drinks is zero. 

Budget shares are not defined or defined as missing values. As a matter of fact, it’s not just 

because a demand system is specified in the form of budget shares; rather, the neoclassical 

consumption theoretical framework is based on positive total budget constraint. Hence, a 

budget allocation analysis framework should not include observations with zero total 

expenditure.  

Conditioning on positive total expenditure makes perfect technical sense in the macro 

aggregate consumption world, in that aggregate expenditure on any good in the budget is 

always positive and thereby, the total expenditure must also be positive. An enormous 

amount of previous exceptional studies were based on aggregate demand data (for example, 

Deaton and Muellbauer 1980a, Manser and McDonald 1988, Varian 1983, Christensen, 

Jorgenson, and Lau 1975, and Gallant 1981). Blundell, Pashardes, and Weber (1993) 

concluded that unless certain factors are controlled, aggregate data alone unlikely produce 

reliable estimates of structural price and income coefficients.  

When it comes to micro individual-level consumption world, zero expenditures for 

certain goods, or even for the whole category of such goods as soft drinks, meat, etc., are 

certainly possible. Then, if a weakly separably preference is assumed as in, for example, 

Hoderlein and Mihaleva (2008), Chalfant (1987) and Lewbel (1989), the zero observations on 

total soft-drink expenditure could be considered as a result of the first-stage budget allocation 

problem in a multi-stage budgeting framework (Deaton and Muellbauer 1980a, Deaton and 

Muellbauer 1980b, Edgerton 1997). In particular, assuming weak separability between soft 

drinks and other alternative commercial drinks and foods, such as milk-based drinks, the 
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subjects first make decisions on whether they would like to give some soft drinks to their 

children and then, how much to give them. If they have decided to give some soft drinks to 

their children, i.e. the total expenditure on total soft drinks for their children is positive, they 

proceed to the second stage to make decisions about how to allocate the total budget on soft 

drinks among the three drinks considered. It is noteworthy that at this second stage, it is also 

possible that respondents do not choose certain drinks for their children. As a result, although 

they are recorded as zeros in expenditure form when pooled together, some of these zeros 

might come from a different generating process than the others.  

Table 1 and Table 2 summarise the number of total, positive and zero observations, apart 

from sample means and standard deviations for total expenditure on soft drinks and for shares 

of the three soft drinks considered. As shown in Table 1, for each of the four variables, i.e. 

total expenditure, fizzy share, juice share and cordial share, there are a substantial amount of 

zero observations, which requires serious consideration in the econometric analysis.  

 

Table 1 Number of positive and zero observations for total soft-drink expenditure for children and shares 

of soft drinks 

 Total obs. Positive obs. Zero obs. 

Total expenditure 2460 (100%) 1232 (50.08%) 1228 (49.92%) 

Fizzy share 1232 (100%) 214 (17.37%) 1018 (82.63%) 

Juice share 1232 (100%) 1026 (83.28%) 206 (16.72%) 

Cordial share 1232 (100%) 463 (37.58%) 769 (62.42%) 

Note: observation is abbreviated to obs. 
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Table 2 Summary of total expenditure and shares of soft drinks for total, positive and zero observations 

 Total obs. Positive obs. 

 Mean SD Mean SD 

Total expenditure 0.692 (1.356) 1.382 (1.649) 

Fizzy share 0.096 (0.255) 0.554 (0.350) 

Juice share 0.745 (0.381) 0.895 (0.200) 

Cordial share 0.159 (0.315) 0.422 (0.391) 

Note: observation is abbreviated to obs. Standard deviation are given in parentheses. 

 

In the literature, the two principal reasons for zero expenditures in microeconomic 

expenditure data are consumers at a corner solution for the commodity in question (Wales 

and Woodland 1983), and limited survey periods leading to infrequency of purchase (Deaton 

and Irish 1984). To our knowledge, most of the econometric techniques in the literature are 

developed to model economics non-consumption (for example Yen and Lin 2006, 

Meyerhoefer, Ranney, and Sahn 2005, Yen 2005, Perali and Chavas 2000, Heien and 

Wessells 1990). The only exception is Deaton and Irish (1984). Since our panel data come 

from a consumption experiment, it is admissible to assume that the zero expenditure 

observations, in our case, represent a genuine corner solution where the subjects deliberately 

choose not to consume particular soft drinks conditional on the attributes of the soft drinks in 

each scenario.  

This study employs a fixed-effects censored demand system analysis framework, to 

account for the reported zero expenditure observations on certain soft drinks (i.e. choose to or 

not to give their children certain soft drinks). The fixed-effects censored demand system 

model is estimated using the micro-level panel data collected from the SPLASH consumption 
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experiments. With the increasing availability of micro-data, the use of such individual-level 

data is preferable, since it avoids the problem of aggregation over individuals and often 

provides a large and statistically rich sample (Heien and Wessells 1990). As opposed to other 

comparable household-level consumption data, such as ACNielsen Australian Household 

Scanner Panel data and Australia Household Expenditure Survey data, another remarkable 

advantage of our data is that they give information on the consumption of a couple of popular 

sugar sweetened beverages by children within households. 

Much of the recent empirical effort on censored demand system has been concerned 

with circumventing the “curse of dimensionality” associated with the theoretically consistent 

models proposed by Wales and Woodland (1983) and Lee and Pitt (1986, 1987). For example, 

Heien and Wessells (1990), Shonkwiler and Yen (1999) and Yen, Kan, and Su (2002) adopt a 

two-step procedure to reduce the computational burden from using a full information 

maximum likelihood estimator. Nonetheless, Arndt, Liu, and Preckel (1999) claimed that this 

procedure and its application to corner solutions are unable to account for the role of 

reservation prices. Instead, Arndt (1999) proposed to address this difficulty using maximum 

entropy (ME) techniques, and generate a simpler framework for the imposition of regularity 

conditions. However, the fact that the asymptotic properties of this estimator are not well 

understood in nonlinear applications limits its feasibility. 

More recently, Perali and Chavas (2000) suggest a consistent multi-step approach to the 

problem, which involves single-equation tobit estimation of unrestricted demand parameters 

and minimum chi-square estimation to recover restricted demand parameters. Yen, Lin, and 

Smallwood (2003) use the simulation technique, as well as a quasi-maximum likelihood 

procedure, to facilitate the estimation of a censored demand system based on the Amemiya-

Tobin general model structure. Yen and Lin (2006) adopt a sample selection approach to 

estimating a system involving a small number of commodities using a full information 
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maximum likelihood estimator. While all of the above studies provide an approach to 

obtaining consistent estimates of disaggregated demand models, they are designed for cross-

sectional data and thereby, they suffer from limited ability to control for heterogeneous 

preferences and limited variation in real price. To the best of our knowledge, Meyerhoefer, 

Ranney, and Sahn (2005) is the only work which extends this literature to the context of 

panel data. They proposed a consistent GMM estimation framework for censored demand 

system applications using panel data, and controlled for unobserved heterogeneity using a 

correlated random-effects specification. 

Given the panel structure of our micro-level data, it seems natural for us to follow 

Meyerhoefer, Ranney, and Sahn (2005)’s estimation strategy. However, one technical 

difficulty is that built upon the neoclassical budget allocation framework, a general flexible 

demand system analysis model, such as AIDS and QUAIDS, requires positive expenditure to 

be observed for at least one of the three soft drinks; in other words, as discussed, subjects’ 

total expenditure on all the three soft drinks has to be positive. Even though Meyerhoefer, 

Ranney, and Sahn (2005)’s censored demand system model is able to handle zero expenditure 

observations for certain goods, if a subject is observed to have purchased nothing, this 

observation has to be excluded from the estimation. This can also be easily seen from the use 

of logarithm of total expenditure on the right-hand side of the system specification as an 

explanatory variable. On the other hand, estimating average expenditure elasticity across the 

sample also involves evaluating the logarithm of total expenditure for each observation. 

As shown in Table 1, 50.08% of the total 2460 non-missing observations have zero total 

expenditure on soft drinks. Employing Meyerhoefer, Ranney, and Sahn (2005)’s correlated 

random-effects censored demand system analysis framework will exclude these observations 

from estimation, which one might find similar to an incidental truncation problem. If a 

subject’s decision about whether or not to give their children any soft drink is not 
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systematically correlated to their decision about how much of each soft drink to give to their 

children, estimates conditional on the truncated sample (or equivalently, conditional on 

positive total expenditure on soft drinks) are still consistent; otherwise, a sample selection 

bias might result. Accordingly, a proper statistical test for this potential selection bias is 

needed. 

Before proceeding to carrying out a statistical test for selection bias in the current 

context, we first introduce the share equations for a censored demand system model whereby 

price and expenditure elasticities can be estimated. Conditional on positive total expenditure 

on soft drinks, the subject makes decisions on how to allocate the total expenditure among 

individual soft drinks in scenarios given the price and attributes of each drink. In accordance 

with neoclassical consumption theory, assuming weakly separable preference, define the 

conditional direct utility function as 
1( ; , , , )jt jt Ljt jU q d d  , where t  ( 1, ,T ) indexes 

scenarios, j  ( 1, , J ) denotes subjects or decision makers, 1( , , ) 'jt jt Kjtq q q  is a vector 

containing subject j ’s consumption levels for the thk  soft drink in scenario t , ljtd  denotes 

the realisation of the l th ( 1, , L ) attribute for subject j  ( 1, , J ) at scenario t  

( 1, ,T ), and j  is a time invariant individual specific effect representing unobserved 

heterogeneity across subjects.  

It is assumed that (.)U  represents a preference ordering of the PIGLOG form. Then, 

according to duality theory (Deaton and Muellbauer 1980b), the indirect utility function 

corresponding to Deaton and Muellbauer (1980a) can be specified as: 
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where log jtc  represents the total expenditure on soft drinks at scenario t  for household j  

and kjtp  denotes the price of soft drink k  observed at scenario t  by subject j . 

The attributes of soft drinks and the individual specific effects are embedded into the 

demand model following a procedure named “demographic translating”. This procedure is 

very general in the sense that the demographically extended demand system are still 

theoretically plausible, if the initial demand system is theoretically plausible (Pollak and 

Wales 1981, Pollak and Wales 1992). 

Demand equations are conventionally represented in share form, to be more consistent 

with an assumption of homoscedasticity and to remove dependence on the numeraire (Fry, 

Fry, and McLaren 1996). Applying the logarithm version of Roy’s Identity, the deterministic 

Marshallian uncompensated demand share equations of the demographically extended 

Almost Ideal Demand System (AIDS) can be obtained. To estimate the system of share 

equations, appending stochastic error terms gives rise to the econometric specification shown 

as follows: 

 * log (log log )njt n nl ljt nk kjt n jt jt nj njt

l k
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where *
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 and 1 ( )
2ki ki ik    . njtu  is an error term. 

In order to linearize the above budget share equation and circumvent the problem that 

incorporating demand shifters in the intercepts renders the AIDS model invariant to units of 

measurement (Alston, Chalfant, and Piggott 2001). One way to solve the problem is to use a 

scale-invariant log-linear Laspeyres index, log logS o

jt k kjtk
P w p  where o

kw  is the mean 

share for soft drink k  across all the subjects and all the scenarios, to replace log jtP  in the 

AIDS model, which has been shown by Moschini (1995) and Buse (1998) to have good 

approximation properties. This new price index can also reduce the potential for severe 

multicollinearity problem while reducing the burden of estimation. Homogeneity and 

symmetry restrictions implied from consumption theory can be imposed on the demand 

equations through restrictions on certain parameters as follows: 0ikk
   and ki ik  .  

The adding-up condition is not imposed a priori, because although the observed budget 

shares add up to one, the latent shares need not, which remains an issue yet to be resolved in 

this literature, and no attempt is made in this study to formally deal with this difficulty. 

Consequently, following the previous studies (for instance Meyerhoefer, Ranney, and Sahn 

2005 and Perali and Chavas 2000), adding up is not imposed on the structural parameter 

estimates. It should be noted that this practice should have limited impact on the price 

coefficients since imposing both symmetry and homogeneity restrictions implies the  ’s sum 

to zero across equations by default.  

The share equations in (3.2) can be regarded as latent share equations (Wales and 

Woodland 1983). In reality, demand shares are bounded between zero and unity. Thus, 

observed shares njtw  relate to latent shares *

njtw  such that  
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From (3.2), it can be clearly seen that any observation with total expenditure, jtc , being zero 

will be excluded from the estimation. 

3.2  A variable addition test for selection bias 

 

To test the significance of the potential sample selection bias, a variable addition test, similar 

in spirit to Wooldridge's (1995) variable addition tests for selection bias (also see Wooldridge 

2010a), is proposed and applied in this study. In particular, we specify the selection 

mechanism as an equation of the Tobit form, as follows:  
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where, denoting observable explanatory variables as 
*s

jtx  and letting  * * *

1, ,s s s

j j jTx x x


 , jt is 

assumed to be independent of *s

jx . jIncome  represents respondent j ’s total household 

income. Combining the latent equations in (3.2) and (3.3), for each soft drink 1, )n K (  

introduces the following fixed-effects selection system:  

 * log (log log )njt n nl ljt nk kjt n jt jt nj njt

l k

w d p c P u             (3.4) 

 *

0 log w

jt l ljt k kjt j jt j jt

l k

c d p Income q                (3.5) 

Since the unobservable individual specific effect j  in (3.5) is expected to be correlated 

with individual tap water consumption, using a Mundlak-type model (Mundlak 1978), this 
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correlation can be modelled as a linear projection of j  on the average tap water 

consumption across all the scenarios, denoted by w

jq :  

 
1

w

j j jq      (3.6) 

where j  is assumed to be independent of *s

jx  with a zero mean normal distribution. 

Substituting in j , the selection equation (3.5) can be written as: 

 
*

0 1logw w

jt l ljt jt k kjt j j jt

l k

c d q p Income q                (3.7) 

where jt j jtv   , and  20,  jt N   . Assuming a weakly separable preference, the 

model (3.3) might be considered as a reduced form of a first/upper-stage budget allocation 

problem. It should also be mentioned that this test is under the assumption that the latent 

variable determining selection can be observed whenever it is nonnegative, but for the 

purpose of test, the selection mechanism does not have to be correctly specified in any sense, 

as it simply serves as a vehicle for obtaining a valid test (Wooldridge 1995) 

If there is no selectivity bias, since *

njtw  in (3.4) is only partially observed, a normal 

linear fixed-effects estimation strategy for (3.4) still produces inconsistent estimates. Alan et 

al. (2014)’s semi-parametric estimator for two-sided censoring models with fixed effects is 

employed. Denote all the observable explanatory variables in (3.4) as jtx  and let 

 1, ,
jj j jTx x x


  and  1,j j jT   
 . Under the assumption that for any n , njtu  is 

identically distributed conditional on  ,  ,nj j j jv x ， , the semi-parametric estimator 

conditional on * 0jtc   is consistent and asymptotically normal (Alan et al. 2014). A necessary 
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condition of this assumption is  | ,  , 0njt nj j j jE u v x  ， . This also suggests a useful 

alternative that implies selectivity bias. The simplest such alternative is  

    | ,  , ,           1,2, , ,njt nj j j j n jt n jt jE u v x v t T        ，   

  njt njt n jt ju v      is identically distributed conditional on  ,  ,nj j j jv x ，
 

   (3.8) 

for some unknown scalar n . 

Under the alternative (3.8), we have  

 

 * log (log log )

      = log (log log )

njt n nl ljt nk kjt n jt jt nj n jt j njt

l k

n nl ljt nk kjt n jt jt n jt nj njt

l k

w d p c P v

d p c P

       

       

        

      

 

 
  (3.9) 

where nj nj n jv    . From (3.9), it follows that if we could observe jt , when * 0jtc  , then 

we could test the null hypothesis by including the jt  as an additional regressor in the semi-

parametric fixed-effects estimation and testing 0H :  0n   using standard methods. While 

jt  is not observable, it can be estimated whenever * 0jtc   because jt  is simply the error in 

a Tobit model. Therefore, the following test for selection bias when 0jtc   is proposed: 

Step 1: Estimate the equation (3.7) by pooled Tobit. 

Step 2: When 0jtc  , calculate the Tobit residuals:  

 0 1 2
ˆ ˆˆ ˆ ˆ ˆ ˆlogw w

jt jt l ljt jt k kjt j j

l k

c d q p q Income      
 

       
 

    (3.10) 

Step 3: Estimate the equation  
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* log (log log )

ˆ        ,

njt n nl ljt nk kjt n jt jt

l k

n jt nj njt

w d p c P   

   

    

  

 
  (3.11) 

using those observations for which 0jtc  . 

Step4: Test 0H :  0n   using the standard error of ˆ
n . 

As mentioned above, *

njtw  is only partially observed, the normal linear fixed-effects 

estimation produces inconsistent estimates. This study employs Alan et al. (2014)’s 

consistent semi-parametric estimator for two-sided censoring models with fixed-effects to 

estimate parameters in equation (3.11). In particular, let n  denote coefficients in (3.11) to be 

estimated and jtx  denote the vector of all the observed explanatory variables in (3.11) 

exculding ˆ
jt  and let  1, ,

jj j jTx x x


  and  1,j j jT   
 . Under the hypothesis that njt  

is identically distributed conditional on  ,  ,nj j j jv x ， , n  can be consistently estimated 

Alan et al. (2014)’s semi-parametric estimator, and  

 

'

1 1

1ˆ arg min , ,
ˆ ˆ

j

J
jt js

n njt njs

j s t T j jt js

x x
U w w

T
 

    

  
   

    

    (3.12) 

where  

  

 

 

 

 

 

22

1 1 3 1 3 2 1 2 2

22 2

1 1 3 1 3 2 1 2 2 1

2

3 3 2 1 2 2 1 2

2

1 2 1 2 2 3

2

2 2 3 1 2 3 3 4

2 2

4 4 2 4

1 2 2 2 for 1

2 2 2 2 for 1

2 2 for 

, y , for 

2 2 for 

2 2 2 2

c c c c c c y y c d

d d c c c c c c y y c d c

c d c c y y c c d c

U y d y y d c d c

c d c c y y c c d c

d d c c c c c

        

           

      

   

      

       

 

2

2 3 1 2 3 4

22

4 4 2 4 2 3 1 2 3

for 1

1 2 2 2 for 1

c y y c c d

c c c c c c y y c d












    

       
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and  

     1 2 1 2 2 1 3 2 1min , 1 ,  max , 1 ,  min 1 ,c y y c y y c y y         and  4 2 1max 1 ,c y y  . 

The rationale behind this estimator is that for example, if   0E x  , then one has the 

moment conditions  * 0E y x x    , where *y  denotes the latent variable. However, 

with censoring, y x   will not have the same properties as  . The idea employed in Alan 

et al. (2014), and some others such as Powell (1986), Honoré (1992) and Honoré and Powell 

(1994), is to apply additional censoring to y x   in such a manner that the resulting re-

censored residual satisfies the conditions assumed on  . The minimisation problem (3.12) 

has as first-order condition the sample analogue of moment conditions as follows: 

  
1

1
, w , 0

j

njt njs j n j

s t T j

E u w x x
T


  

 
   

  
   (3.13) 

where j jt jsx x x    

and  

  
 

 

1

2 1 1 2

1 2 1 2 2 3

1 2 3 4

4

0 for 1

1 for 1

min 1 ,  for 

, y , for 

max 1,  for 

1 for 1

0 for 1

d

d d c

y y c d c

u y d y y d c d c

y y c d c

d c d

d

 

   


   


    
    


  




  

Under 0H :  0n  ,  

    1 1ˆ 0,d

n nJ N S         (3.14) 
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where   and V  are consistently estimated as follows (Alan et al. 2014):  

 

 

 

 

 

 

  

ˆ1 1 1

ˆ1 0
1 1 ˆˆ 1 1 1

ˆ1 0

ˆ1 1 1

js jt n js

js jt n js

js jt n js jt js jt

s t j

jt js jt n

jt js jt n

x x w

x x w

x x x x x x
J T

w x x

w x x













   
        
   

   
      

             
     

       
   

   
      

    


1

J

j








  (3.15) 

  

and  

 
1

1ˆ ˆ ˆ
J

j j

j

S s s
J 

   

with  

    
1 ˆˆ , ,j js jt js jt n js jt

s t j

s u w w x x x x
T




 
   

 
 . 

3.3 Correcting for sample selection bias 

 

In cases where the null hypothesis is rejected, the model has to be corrected for selection bias. 

To correct for selection bias, we need to formalise the selection mechanism and the 

assumption about the relationship among nj , njtu  and jt . We first formalise the selection 

mechanism. 

Assumption 3.3.1:  
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Denote observable explanatory variables in (3.7) as 
s

jtx  and let  1, ,s s s

j j jTx x x


 . Define *

jtc  

as in (3.7), where jt  is independent of s

jx  and  20,  jt N   . 

In spirit to a conditional mean independence assumption in a linear fixed-effects 

estimation framework, we need the following assumption which allows us to correct for 

selection bias in the current nonlinear estimation framework. 

Assumption 3.3.2: 

   | , , , ,  1,2, , ,njt nj j j j n jt n jt jE u v x v t T          and  1 2, , ,
jnj nj njT   , where 

 njt njt n jt ju v     , are continuously distributed with a density that is continuous and 

positive everywhere and are identically distributed conditional on  , , ,nj j j jv x  , while jtx  

denote the vector of all the observed explanatory variables in (3.11) exculding ˆ
jt  and 

 1, ,
jj j jTx x x


 . 

Under Assumptions 3.3.1 and 3.3.2, we have (3.11). Estimation for (3.11) proceeds 

exactly as in the test procedure in the previous section, except in cases that n  is different 

from zero, the asymptotic variance of the coefficient estimates in (3.11) ˆ
n  needs to be 

adjusted as in the following procedure, given the preliminary estimation of the coefficients, 

denoted by  , in (3.7). 

Step 1, Step 2 and Step 3 are carried out exactly as in the in the test procedure in the previous 

section. 

Step4: to estimate the asymptotic variance of ˆ
n  using the results in the Appendix. 
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3.4 Generalized Method of Moments Estimation framework 

 

Once the consistent equation-by-equation estimates are obtained for each soft drink, 

following Meyerhoefer, Ranney, and Sahn (2005), the cross-equation homogeneity and 

symmetry restrictions on nk ’s, implied from the consumption theory, are imposed through a 

minimum distance estimator using the sample analogue of moment conditions in (3.13), to 

derive consistent structural parameter estimates. Specifically, denote the drink-by-drink 

reduced-form parameter estimates for all share equations as  1 2 3,  ,     


   . The 

structural parameters, denoted by  , can be consistently estimated as:  

      ˆ ˆmin Wm m


   


    

where ̂  are consistent estimates of the reduced-form parameters  , which are obtained 

from drink-by-drink estimation, and W is the weighting matrix measuring the distance 

between the sample moments and the corresponding population moments. (.)m  is a function 

mapping   into  , which is used to impose restrictions implied from demand theory on the 

reduced form parameters.   can be efficiently estimated if 
1W   , where   is the 

asymptotic covariance matrix of ̂ . It can be shown that 
1 1S      (Wooldridge 2010b).  

Let  
'

1 2 3, ,j j j jS S S S    denote the set of the subject j ’s moment conditions in (3.13) 

for all the soft drinks and nj  denote the univariate Hessian for soft drink n . Then, define 

    1 1
1

1 , ,j Njdiag E H E H
 

   and  '

j jS E S S .   can be consistently estimated by 

substituting in sample analogues. 
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3.5 Elasticity Formulae 

 

The generic expressions for total expenditure and uncompensated price elasticities for any 

demand system are given by  

 
1

1
log

n
n

n

w
E

c w


 


  (3.16) 

and  

 
*1
,

log

n
ni ni

i n

w
e

p w



 


  (3.17) 

where *

ni  is the Kronecker delta, and the compensated price elasticities are derived using the 

Slutsky relationship: ni ni i ne e s E  . Since, as explained in Honor (2008), the parameter 

estimates for the fixed-effects models can be converted to marginal effects by multiplying 

them by the fraction of observations that are not censored, for the demand system proposed in 

this study, nE  and nie  can be expressed as follows: 

 
1

1n n n

n

E F
w

    (3.18) 

and  

 
*1
,ni ni n ni

n

e F
w

     (3.19) 

where nF  denotes the fraction of observations that are not censored for soft drink n  and nw  

is the share of drink n . 
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4. Results 

 

All tests and estimations were carried out using the R programming language. The codes can 

be obtained from the authors upon request. As the null hypothesis that there is no selection 

bias is rejected for Fizzy and Cordial but not for Juice, the correction procedure is only 

implemented for Fizzy and Cordial. Table 3 presents the structural parameter estimates. 

Based on these estimates, the average expenditure and price elasticities are estimated and 

reported in Table 4. We have also estimated and examined the average partial elasticities of 

demand for drink n  (=Fizzy, Juice and Cordial) with respect to the jth attribute of drink i , 

which can be generically expressed as:  

 
,

log 1n n
n ij

ij ij n

x w
P

d d w

 
 

 
  (4.1) 

where nx  denotes the demand for drink n , and is particularly expressed as 

 ,

1
n ij n n

n

P F
w

 ,  (4.2) 

where nw  is the share of drink n . The estimates and their standard errors are reported in 

Table 5. These results are important evidence for soft drink tax policy concerns and health-

related, such obesity and dental health, campaigns. 

As shown in Table 4, the average uncompensated own-price elasticities for all the three 

drinks are expectedly all negative. According to the sign of the average uncompensated cross-

price elasticities, Fizzy and Juice and Juice and Cordial are on average treated as gross 

complements. After accounting for the income effects, the average compensated own-price 

elasticities of all three goods are also significantly negative, which is consistent with the law 
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of demand, and all the average compensated cross-price elasticities are positive, although 

some are not statistically significant, indicating that on average all the three drinks are net 

substitutes to one another.  

As has been noticed, the adding-up condition is not imposed a priori. It is interesting to 

see if this condition is still, at least approximately, satisfied. Since the adding-up condition is 

equivalent to the Engel aggregation constraint: 1n nw E   (Deaton and Muellbauer 1980b), 

given our estimated income elasticities  1.607,  1.129,  0. 15ˆ 3E   and the mean shares of 

drinks  0.096,  0.745, 0.159w  , ˆ 1.045w E  , which is very close to 1.  

Table 5 presents the average estimated partial elasticities w.r.t attributes. In particular, 

these estimates can be interpreted as the percentage changes of drink consumption 

corresponding to changes of attributes. Taking Fizzy as an example, switching from normal 

Fizzy to diet Fizzy would increase the consumption of Fizzy on average by 27.8%. As shown 

in Table 5, most average own and cross partial elasticity estimates are not statistically 

significant, suggesting that on average, drink consumptions are not statistically significantly 

affected by most own and cross attribute variations. Nevertheless, we do observe that Fizzy 

being diet significantly increases its consumption (27.8%). Being presented together with diet 

Cordial increases the consumption of Fizzy by 15.4% than otherwise. Healthier fizzy (no 

added colours or preservatives) significantly crowd out the consumption of juice. And, being 

present together with either diet Fizzy or Juice with no added sugar increases its consumption 

than otherwise. 

In order to illustrate what might have been achieved by taking into account the potential 

selection on total soft drink expenditure, we also estimate the proposed semi-parametric 

fixed-effects censored demand system model only using observations with positive total soft 
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drink expenditure without undertaking the sample selection test and correction procedures. 

To put it another way, we make our estimates fully vulnerable to potential selection biases 

which might arise from the exclusion of observations with zero total soft drink expenditure 

and it would be very interesting to see how the main results would be different. The results 

are presented in Tables A1 through A3 in Appendix 2.  

In comparison to Table 3, the structural parameter estimates in Table A1 tend to be 

smaller, and we observe fewer significant estimates in Table A1. In particular, in contrast to 

Table 3, the coefficient estimates of log real total expenditure for Fizzy and log cordial price 

are not statistically significant even at 10% significance level in Table A1. While contrasting 

Table A2 to Table 4, in terms of total expenditure and price elasticity estimates, it can be 

observed that without taking into potential selection bias tends to overestimate positive but 

underestimate negative estimates than otherwise. We also observe fewer estimates which are 

statistically significant (even at 10% significance level) in Table A2. For instance, while in 

Table 4 one percent increase in Fizzy price will significantly increase the consumption of 

Cordial by 0.254 percent, after accounting for the income effects, the counterpart in Table A2 

is only 0.012 percent and not statistically significant at 10% level. 

As for partial elasticity estimates, once again, we observe that the discrepancy between 

estimates of Table 5 and Table A3 is remarkable. For instance, while in Table 5 we 

respectively observe 10% significant and non-significant partial elasticities of the 

consumption of Fizzy with respect to Cordial Diet and Juice Diet, we observe exactly the 

opposite in Table A3. Also, in Table A3 for the Cordial consumption, while a statistically 

significant (at 1% level) negative partial elasticity w.r.t. Fizzy diet is observed, Table 5 shows 

a corresponding 10% statistically significant positive partial elasticity. 
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Accordingly, it’s quite obvious that taking into account the potential selection biases on 

the total soft drink expenditure results in substantial differences in the estimates, which, in a 

perceivable manner, demonstrates significant selection bias. 

To better inform policy, it is interesting to examine how the consumption behaviour of 

subjects from households (HHs) having higher income would be different from those from 

HHs with lower HH income. Hence, we explicitly split our sample into two parts at the point 

of median HH income in our sample, test and correct for potential selection bias on the total 

soft drink expenditure, and estimate the proposed semi-parametric fixed-effects demand 

system model respectively for the two parts.  

In terms of estimation, the most salient discrepancy is that for the subjects with higher 

than median HH income, the null hypothesis of no selection bias with the total soft drink 

expenditure is rejected for all the three drinks considered. In contrast, the null is not rejected 

for any of the three drinks for the subjects with lower than median HH income. Consequently, 

the correction procedure is undertaken for all the drinks for the subjects with higher than 

median HH income, but is not carried out for any of the three drinks for the sub-sample with 

lower than median HH income. This discrepancy suggests that for those rich subjects, there 

might exist an underlying mechanism which drives subjects’ overall perception towards soft 

drinks given the attributes and prices presented. Such a mechanism is systematically 

correlated with the rich subject’s consumption decision for each of the three drinks. In 

contrast, such a correlation does not exist for any of the three drinks for the poor subjects. 

The results for subjects with HH income lower than the median and subjects with higher 

than the median HH income are respectively given in Table A4 through Table A6 and Table 

A7 through Table A8. Contrasting Table A8 with Table A5, in terms of total expenditure 

elasticity, we observe that subjects with lower HH income have higher elasticity for Fizzy but 
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lower elasticity for Juice and much lower elasticity for Cordial. In our case, the total 

expenditure on soft drinks might be better interpreted as an indicator of subjects’ (or parents’) 

overall openness or attitude towards soft drinks. Hence, conservative parents tend to give less 

or even no soft drinks to their children. The differences in total expenditure elasticities 

between subjects with lower and higher HH income suggest that when the subject becomes 

more open to soft drinks and decides to increase his/her total budget on soft drinks for their 

children by 1%, then the subject from HH with higher than median income (rich subject) only 

increases the Cordial consumption on average by 0.4%, while the subject from HH with 

lower than median income (poor subject) increases the Cordial consumption by 1.093%, and 

on average the subject with lower than median HH income tends to increase his/her Fizzy and 

Juice consumption more than the subject with higher than median HH income. 

In terms of price elasticity, after accounting for the income effects, it seems that the rich 

subject’s Fizzy and Cordial consumption is more elastic than the poor subject’s by exhibiting 

lower negative compensated own price elasticities (-0.873 versus -0.535 and -0.768 versus -

0.650), while the rich subject’s Juice consumption is less elastic than the poor’s. As for 

substitutability between different drinks, looking at cross-price compensated price elasticities, 

while there is very strong evidence in Table A8 for the rich subject evincing that Cordial is 

treated as a substitute to either Fizzy or Juice, for the poor subject in Table A5 such evidence 

does not exist. We even vaguely observe that Cordial might be treated as a complement to 

Fizzy or Juice, although the negative compensated cross-price elasticities are not statistically 

significant even at 10% significance level. 

When it comes to partial elasticities w.r.t. attributes, we observe substantial 

discrepancies between the rich and the poor subjects. In particular, the rich subject seems to 

be remarkably more sensitive than the poor to the attributes of drinks. For instance, for the 

rich subject, in terms of partial elasticities w.r.t. own attributes, switching from normal Fizzy 
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to Fizzy with extra vitamins A & C remarkably increases the weekly consumption of Fizzy 

by three times. Diet Fizzy also increases its consumption by 14.7%. Interestingly, while we 

expected parents to have a sense that Fizzy with no added colours or preservatives is healthier 

and therefore increases the consumption, we actually observe a significant decrease of 49.2%. 

The same phenomenon is observed for Cordial as well. In particular, we observe a decrease 

of 21.8% when the Cordial is labelled as no added colours or preservatives. As for Juice, only 

being labelled with extra vitamins A & C seems to statistically significantly increase its 

consumption by 5.9%. For the poor subject, we do not observe much statistically significant 

evidence. The only exception is that Juice with no added sugar interestingly decreases its 

consumption by 7.6%. 

In regards to cross-attribute partial elasticities, it seems that for the rich subject, Juice 

with extra vitamins or Fizzy with extra vitamins tend to significantly increase one another’s 

consumption. For instance, Juice with extra vitamins dramatically increases the weekly 

consumption of Fizzy by 2.5 times. We also observe that Fizzy with extra vitamins and 

Cordial with extra vitamins tend to crowd out each other’s weekly consumption level 

respectively by 83.1% and 27.4%. Juice with no added sugar decreases Fizzy consumption by 

29.3%, whereas Cordial drinks with no added colours or preservatives increase Fizzy 

consumption by 48.1%. Similarly, Fizzy and Juice with no added colours or preservatives 

respectively increase the Cordial consumption respectively by 28.5% and 14.6%. As a result, 

it is interesting to note that for the rich subject, when there is a statistically significant effect, 

a drink being labelled as no added colours or preservatives seems not to increase its own 

consumption yet increase consumption of other drinks. As for the poor subject, once again, 

we observe very little statistically significant evidence. However, it does show that Fizzy 

with extra vitamins significantly increases the consumption of Cordial by 51.2%.  
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Table 3 Structural Parameter Estimates 

Drink Variable Coef. S.E. 

Fizzy     

 Fizzy Diet 0.196 ** (0.082) 

 Fizzy Vitamins 0.101  (0.087) 

 Fizzy Nocolours -0.026  (0.055) 

 Juice Diet -0.049  (0.050) 

 Juice Vitamins 0.109  (0.115) 

 Juice Nocolours -0.055  (0.100) 

 Cordial Diet 0.109 * (0.059) 

 Cordial Vitamins 0.036  (0.075) 

 Cordial Nocolours 0.128  (0.100) 

 Log Fizzy Price 0.064 ** (0.025) 

 Log Juice Price -0.063 *** (0.022) 

 Log Cordial Price -0.001  (0.014) 

 Log Real Total Expenditure 0.428 *** (0.104) 

Juice     

 Fizzy Diet -0.161  (0.111) 

 Fizzy Vitamins -0.018  (0.031) 

 Fizzy Nocolours -0.144 *** (0.045) 

 Juice Diet -0.054  (0.039) 

 Juice Vitamins -0.017  (0.072) 

 Juice Nocolours 0.022  (0.039) 

 Cordial Diet -0.090  (0.104) 

 Cordial Vitamins 0.004  (0.070) 

 Cordial Nocolours -0.015  (0.036) 

 Log Fizzy Price -0.063 *** (0.022) 

 Log Juice Price 0.145 *** (0.029) 

 Log Cordial Price -0.082 *** (0.023) 

 Log Real Total Expenditure 0.318 *** (0.037) 

Cordial     

 Fizzy Diet 0.058 * (0.033) 

 Fizzy Vitamins 0.003  (0.042) 

 Fizzy Nocolours 0.066  (0.044) 

 Juice Diet 0.061 * (0.031) 

 Juice Vitamins -0.015  (0.061) 

 Juice Nocolours 0.008  (0.027) 

 Cordial Diet 0.014  (0.057) 

 Cordial Vitamins -0.013  (0.045) 

 Cordial Nocolours 0.000  (0.042) 

 Log Fizzy Price -0.001  (0.014) 

 Log Juice Price -0.082 *** (0.023) 

 Log Cordial Price 0.082 *** (0.028) 

 Log Real Total Expenditure -0.404 *** (0.038) 
Note: * Significant at 10%; ** Significant at 5%; *** Significant at 1%. Fizzy Diet: diet Fizzy; Fizzy Vitamins: Fizzy with 

extra vitamins; Fizzy Nocolours: Fizzy with no added colours or preservatives; Juice Diet: Juice with no added sugar; Juice 

Vitamins: Juice with extra vitamins; Juice Nocolours: Juice with no added colours or preservatives; Cordial Diet: diet 

Cordial; Cordial Vitamins: Cordial with extra vitamins; Cordial Nocolours: Cordial with no added colours or preservatives. 
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Table 4 Average Total Expenditure Elasticities and Uncompensated and Compensated Price 

Elasticities 

 Fizzy Juice Cordial 

Total expenditure 
1.607*** 1.129*** 0.315*** 

(0.147) (0.015) (0.064) 

Uncompensated 

Fizzy 
-0.909*** -0.026*** -0.001 

(0.035) (0.009) (0.024) 

Juice 
-0.090*** -0.941*** -0.138*** 

(0.031) (0.012) (0.038) 

Cordial 
-0.001 -0.033*** -0.861*** 

(0.020) (0.009) (0.047) 

Compensated 

Fizzy 
-0.755*** 0.083*** 0.029 

(0.032) (0.009) (0.024) 

Juice 
1.108*** -0.100*** 0.097 

(0.126) (0.017) (0.065) 

Cordial 
0.254*** 0.146*** -0.811*** 

(0.032) (0.009) (0.048) 
Note: Standard errors are in parenthesis. * Significant at 10%; ** Significant at 5%; *** Significant at 1%. 
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Table 5 Average Partial Elasticities w.r.t. Attributes  

Drink Attributes Coef. S.E. 

Fizzy     

 Fizzy Diet 0.278 ** (0.117) 

 Fizzy Vitamins 0.143  (0.123) 

 Fizzy Nocolours -0.037  (0.077) 

 Juice Diet -0.070  (0.070) 

 Juice Vitamins 0.154  (0.163) 

 Juice Nocolours -0.078  (0.142) 

 Cordial Diet 0.154 * (0.084) 

 Cordial Vitamins 0.051  (0.106) 

 Cordial Nocolours 0.182  (0.142) 

Juice     

 Fizzy Diet -0.065  (0.045) 

 Fizzy Vitamins -0.007  (0.013) 

 Fizzy Nocolours -0.058 *** (0.018) 

 Juice Diet -0.022  (0.016) 

 Juice Vitamins -0.007  (0.029) 

 Juice Nocolours 0.009  (0.016) 

 Cordial Diet -0.036  (0.042) 

 Cordial Vitamins 0.002  (0.029) 

 Cordial Nocolours -0.006  (0.014) 

Cordial     

 Fizzy Diet 0.098 * (0.056) 

 Fizzy Vitamins 0.004  (0.072) 

 Fizzy Nocolours 0.113  (0.074) 

 Juice Diet 0.104 * (0.053) 

 Juice Vitamins -0.025  (0.103) 

 Juice Nocolours 0.013  (0.046) 

 Cordial Diet 0.024  (0.097) 

 Cordial Vitamins -0.023  (0.077) 

 Cordial Nocolours 0.000  (0.071) 
Note: * Significant at 10%; ** Significant at 5%; *** Significant at 1%. Fizzy Diet: diet Fizzy; Fizzy Vitamins: Fizzy with 

extra vitamins; Fizzy Nocolours: Fizzy with no added colours or preservatives; Juice Diet: Juice with no added sugar; Juice 

Vitamins: Juice with extra vitamins; Juice Nocolours: Juice with no added colours or preservatives; Cordial Diet: diet 

Cordial; Cordial Vitamins: Cordial with extra vitamins; Cordial Nocolours: Cordial with no added colours or preservatives. 

 

5. Summary and Conclusion 

 

In this study, using panel data obtained from a soft drink consumption experiment, a new 

semi-parametric fixed-effects censored demand system is specified and estimated. In 

particular, to deal with the difficulty of a substantial proportion of zero observations for the 
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total expenditure on soft drinks and for the expenditure on each drink, a new two-step 

estimation strategy is developed and a semi-parametric estimator for two-sided censoring 

models with fixed effects is employed. In addition, a consistent and asymptotically efficient 

GMM estimator is used to impose economic restrictions on the model and identify the 

underlying structural parameters. 

This two-step estimation strategy also has the potential to recover a full multi-stage 

demand system estimation framework which has been extensively examined and applied to 

study aggregate consumption data, but it is not yet clear in the literature how to apply a multi-

stage framework to study micro-level consumption data and worth pursuing in future research. 

Based on our parameter estimates, the consumption behaviour of subjects is analysed 

through estimated income elasticities and uncompensated and compensated price elasticities. 

The partial elasticities of demand with respect to attributes of soft drinks are also estimated. 

These results provide valuable empirical evidence for soft-drink tax policy concerns and 

health-related, such obesity and dental health, campaigns.  
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Appendix 

 

The estimation falls within the two-step M-estimation framework, and the semi-parametric 

estimator becomes a two-step estimator. To see this, it is helpful to substitute in (3.12) the 

expression of ˆ
jt  in (3.10) and rewrite the semi-parametric estimator on the selected sample 

as:  

 

     

       

1 1

1 1

1ˆ ˆarg min , ,

1
ˆ ˆ     = arg min , ,

    

n
j

n
j

J

n njt njs jt js n jt js n jt js n

j s t T j

J
c c c u u u

njt njs jt js n n jt js n jt js n

j s t T j

U w w x x c c x x
T

U w w x x c c x x
T





   

     

   

   

  
      

 

  
      

 

 

 

  (A.1) 

where jtx  denotes the vector of all the explanatory variables in (3.11) except ˆ
jt ; 

n  denotes 

coefficient vector corresponding to jtx ; n  denotes the coefficient corresponding to ˆ
jt , so 

that  ˆ,jt jt jtx x 


  and  ,n n n  


 ; jtx  denotes the vector of observable explanatory 

variables in (3.7) and ̂  denotes corresponding coefficient estimates; c

jtx  denotes shared 

observable explanatory variables between (3.7) and (3.11) and u

jtx  denotes observable 

explanatory variables that only appear in the selection equation (3.7). The identification and 

consistency of this two-step estimator given   can be clearly seen following the 

identification and consistency arguments in Alan et al. (2014). 

Since the objective function  U  , as shown in (3.12), is not twice differentiable, the 

standard adjustment procedure (see for example Wooldridge 2010c) cannot be applied to 
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show the asymptotic normality of ˆ
n . However, following Theorem 3.3 in Pakes and Pollard 

(1989), the normality of the two-step semi-parametric estimator can still be proved.  

Let  

    
1

1
ˆ, ; , ,

j

j n njt njs j n j

s t T j

h x u w w x x
T

  
  

     

(A.2) 

and define functions: 

      
1 1

1 1; , ; ;
J J

J j jj j
G a b h x a b h a b

J J 
     

(A.3) 

and  

     ; ;jG a b E h a b   

(A.4) 

Since ̂  is obtained from a Tobit estimation, a first-order representation for  ˆJ    can 

be obtained, which is written as (Wooldridge 2010c):  

      1/2

1

ˆ 1
J

j p

j

J J r o  



   . 

(A.5) 

Throughout this appendix, the symbols     denotes not only the usual Euclidean norm but 

also a matrix norm:    
1

22

,ij iji j
b b  . LEMMA 1 states that the function  ;nG b  is 

differentiable at  . 

Lemma A1: Given finite moment conditions that  2
c

jtE x    and  2
u

jtE x   ,  ;nG b  

is differentiable at   with derivative matrix  
 ;n

n

b

dG b

db









  . 
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PROOF:  

Let  , ,a c u

jt jt jt jtx x c x


   for any jt T  and   , ,a c u

n n n n nb b    
     

 
, so that 

 ,c ub b b


  . According to Theorem 1 in Alan et al. (2014), given 
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  
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

, 

where 
a a a

j jt jsx x x   . Given the finite moment conditions, it is trivial to see that    . 

Q.E.D. 

In order to show that  ˆ;n nG    can be approximated by a well-behaved linear function, 

we also need the following lemma.  

Lemma A2: For any sequence  J  of positive numbers such that 0J   as J  ,  

        
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2sup ; ; ; .
J

J n n J n p
b

G b G b G J
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 

     

Let   , ,a c u

n n n n nb b    
     

 
. Given    

1

1
; , ,

j

a a a

j n njt njs j n j

s t T j

h b u w w x x
T

 
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     

and the differentiability from Lemma 1, Lemma 2 can be similarly proved as in the proof of 

Theorem 2 verifying condition (iii) for 4l   in Honoré (1992). 
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Based on the previous two lemmas, the following lemma states that  ˆ;J nG    

converges in distribution to a normal distribution, given the asymptotic normality of 

 ;J nG   . 

Lemma A3: If    ; 0,d

J nJG N V   , then  

    *ˆ; 0,d

J nJG N V     

where  
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PROOF:  

To establish asymptotic normality of  ˆ;J nG   , we first show that  ˆ;J nG    is very 

well approximated by the linear function:       ˆ ˆ; ;J n n J nL G

          . This follows 

directly from Lemma 1 and Lemma 2 together with the consistency of ̂  and first-order 

representation in (A.5). Specifically, given the consistency of ̂ , we can always choose a 

positive sequence  J  that converges to zero as J  goes to infinity slowly enough to ensure 

that  

  ˆ 1JP      . 

With the probability tending to one, the supremum in the statement of Lemma A2 runs over a 

range that includes the random value ̂ . Hence,  
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Then, it follows that 
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Hence,  
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(A.6) 

given the first-order representation of  ˆJ    in (A.5). Then, it follows that  

    *ˆ; 0, ,d

J nJG N V     
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 

. 

Q.E.D. 

With these lemmas, we can derive the asymptotic distributions of the semi-parametric 

two-step estimator ˆ
n . 

Theorem A1: Let c

jtx  denotes shared observable explanatory variables between (3.7) and 

(3.11) and u

jtx  denote observable explanatory variables that only appear in the selection 

equation (3.7). Define  , ,a c u

jt jt jt jtx x c x


  . If 

1. The parameter space,  , is compact, and the true value of the parameter is an interior 

point of  , intn   . 

2. Assumption 3.3.1:  
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Denote observable explanatory variables in (3.7) as 
s

jtx  and let  1, ,s s s

j j jTx x x


 . Define 

*

jtc  as in (3.7), where jt  is independent of s

jx  and  2~ 0,  jt N   . 

3. Assumption 3.3.2: 

Let  1, ,
jj j jTx x x


  and  1,j j jT   
 . 

   | , , , ,  1,2, , ,njt nj j j j n jt n jt j jE u v x v t T          and  1 2, , ,
jnj nj njT   , where 

 njt njt n jt ju v     , are continuously distributed with a density that is continuous 

and positive everywhere and are identically distributed conditional on  , , ,nj j j jv x  , 

while jtx  denote the vector of all the observed explanatory variables in (3.11) excluding 

ˆ
jt . 

4. Finite moment conditions: for any t T ,  
2

a

jtE x   . For any , js t T , s t , 

 
2

2 a a

njt js jtE u x x   ,  
2

2 a a

njs js jtE u x x   , and  
2

2 a a

j js jtE x x    . 

5. While jtx  denotes the vector of all the observed explanatory variables in (3.11) excluding 

ˆ
jt , define  ,m

jt jt jtx x  
 . The matrix  

     | 1 1m m m m m m

jt js jt js jt js nE x x x x x x 
  

      
 

 

has full rank, for , js t T  , s t . 

Then  

       1 1*ˆ 0,
n n

d

n nJ N V    
 

      
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where ˆ
n  is defined as in (3.12) and  

 ;
n

na

G a

a










 


, and 

*

j jV E g g 
 

; 

     ;j j n n jg h r     , where  jr   is given as in (A.5) and  
 ;n

n

b

dG b

db









  . 

PROOF: 

First we prove J -consistency. Given the consistency of the estimator ˆ
n  in (A.1), it 

allows us to choose a positive sequence {𝑘𝐽} that converges to zero as 𝐽  goes to infinity 

slowly enough to ensure that  

  ˆ 1n n JP k      

(A.7) 

The differentiability of  ;G a   at n  can be justified by Theorem 1 in Alan et al. (2014). It 

can be similarly proved as in the proof of Theorem 2 verifying condition (iii) for 4l   in 

Honoré (1992) that 

        
1

2sup ; ; ; .
n J

J J n p
a k

G a G a G J


    


 

     

(A.8) 

With the probability in (A.7) tending to one, the supremum in (A.8) runs over a range that 

includes the random value ˆ
n . Hence,  

        
1

2ˆ ˆ; ; ;J n n J n pG G G J      


     

(A.9) 

By the triangle inequality, the left-hand side of (A.9) is larger than  

      ˆ ˆ; ; ;n J n J nG G G         

(A.10) 

Thus,  
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        
1

2ˆ ˆ; ; ;n p J n J nG J G G      


     

(A.11) 

As  U  is everywhere differentiable,  ˆ ; 0J nG    . Also, as a direct consequence of the 

Central Limit Theorem,  ;J nJG    converges in distribution to  0,N V , where 

   ; ;j n j nV E h h    
  

. Hence, it follows from (A.11) that  

        
1 1

2 2ˆ ; ;n p J n pG J G O J    
 

     

(A.12) 

That is, 

    
1

2ˆ ; .n pG O J 


   

(A.13) 

The differentiability of  ;G a   at n  with a derivative matrix of full rank, according to 

Theorem 1 in Alan et al. (2014), implies that there exists a positive constant 𝑐 for which,  

  ; nG a c a    for a  near n . 

(A.14) 

In particular,     
1

2ˆ ˆ ; .n n p n pO G O J   


    

To establish asymptotic normality of  ˆ
n nJ   , we argue that  ;JG a   can be very 

well approximated by the linear function  

       ; ;
nJ n J nL a a G        , 

(A.15) 

with an approximation error of order  
1

2
p J


 at ˆ

n  and at the *ˆ
n  that minimises  ;JL a   

globally. For ˆ
n , this follows directly from the differentiability of  ;G a   at n  with a 

derivative matrix of full rank and (A.9), together with the √𝑛-consistency results already 

established. In particular,  
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         

    

   

 

1
2

1
2

ˆ ˆ ˆ ˆ; ; ; ; ;

ˆ ˆ                                         + ;

ˆ                                     

                                     = .

n

J n J n J n n J n

n n n

p p n n

p

G L G G G

G

J o

J



         

    

  







   

 

  
 

(A.16) 

To correspond to a minimum of  ;JL a  , the vector   *ˆ
n n n      must be equal to 

the projection of  ;J nG    onto the column space of  
n
 . Hence,  

              
1

*ˆ ;
n n n n nn n J nG            



        . 

(A.17) 

Then, since  
n
  is symmetric and full rank, it follows that  

      
1*ˆ ;

nn n J nJ J G    


      

(A.18) 

As the estimate ̂  of the selection equation in (3.7) is used to consistently estimate  , 

substituting ̂  in (A.18) gives  

      
1*ˆ ˆ ˆ;

nn n J nJ J G    


      

According to continuous mapping theorem (Mann and Wald 1943),    ˆ
n n

p

    . 

As a direct consequence of the Central Limit Theorem,  ;J nJG    converges in 

distribution to  0,N V . Hence, Lemma A3 induces    *ˆ; 0,d

J nJG N V   . 

Consequently, it follows that 

       1 1* *ˆ 0, ,
n n

d

n nJ N V    
 

      

where              * ; ;j n n j j n n jV E h r h r        
 

   
 

.  

Hence,  
1

* 2ˆ
n n pO J 


   and the {𝑘𝐽} sequence can be assumed to satisfy  
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  *ˆ 0n n JP k      

(A.19) 

Since n is an interior point of the parameter space of n ,  , (A.19) implies that *ˆ
n  lies in 

  with probability tending to one. Hereafter, we shall act as if 
*ˆ
n n Jk    and *ˆ

n  always 

lies in  . Actually, it can be easily shown that the contributions from those values of *ˆ
n  not 

satisfying these two requirements are eventually absorbed into an  1po  error term. 

Similarly as in (A.8) and (A.9), we can get  

        
1

* * 2ˆ ˆ; ; ;J n n J n pG G G J      


     

(A.20) 

Then, similarly as in (A.10) through (A.16), we have  

      
1

* * 2ˆ ˆ; ;J n J n pG L o J   


    

(A.21) 

Since  ;JG a   and  ;JL a   are close at both ˆ
n  and *ˆ

n  and *ˆ
n  minimises  ;JL a  , 

ˆ
n  is close to minimising  ;JL a  . So, it follows that  

 

     

   
   

1
2

1
* 2

1
* 2

ˆ ˆ; ;

ˆ                                   ;

ˆ                                   ; .

J n P J n

J n p

J n p

L o J G

G o J

L o J

   

 

 







 

 

 

 

(A.22) 

That is,  

      
1

* 2ˆ ˆ; ; .J n J n pL L o J   


   

(A.23) 

Squaring both sides gives that  



46 

 

      
2 2

* 1ˆ ˆ; ; .J n J n pL L o J        

(A.24) 

The cross product term being absorbed into the  1

po J   is because, from the differentiability 

of  ;G a   at n , it follows  

        
1

* * * 2ˆ ˆ ˆ; .
nn n n n n pG o O J     


        

(A.25) 

Similarly as in (A.8) through (A.11), it follows  

        
1

* *2ˆ ˆ; ; ; ,J n P n J nG o J G G     


     

(A.26) 

which gives    
1

* 2ˆ ;J n pG O J 


 . Hence, given (A.21),  *ˆ ;J nL    is of order  
1

2
pO J


. 

The quadratic form  
2

;JL    has a simple expansion  

      
2 22 * *ˆ ˆ; ; ,

nJ J n nL L            

(A.27) 

about its global minimum. The cross-product term vanishes, because  

      * *ˆ ˆ; ; ,
nJ J n nL L           

(A.28) 

which rearranges to  

      * *ˆ ˆ; ; .
nJ n J nL L           

(A.29) 

Since *ˆ
n  minimises  ;JL   , the residual vector  *ˆ ;J nL    must be orthogonal to the 

columns of 
n

 . 
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Substituting ˆ
n  in (A.27) gives      

2 2 2
* *ˆ ˆ ˆ ˆ; ;

nJ n J n n nL L          . Equating 

this to (A.24) gives    
1

* 2ˆ ˆ
n n n po J  


   . Since 

n
  is full rank, this is equivalent to  

      *ˆ ˆ 1n n n n pJ J o       . 

Then, it follows that  

    1 * 1ˆ 0,
n n

d

n nJ N V        . 

Q.E.D. 

We already know how to consistently estimate 
n

 : use expression (3.15).  ;j nh    and 

 jr   can be respectively by  ˆ ˆ;j nh    and  ˆjr  .   can be estimated as follows: 
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 
 
     

        
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 
 
 
 
 
 
  
  
  
  
  

  
 

  
  
  
  
  
  
  
  
  
  
  
  
    

 
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where jtx  denotes the vector of observed explanatory variables in (3.7),  is a matrix of 

zeros, with the row dimension being equal to the length of jsx  and column dimension being 

equal to the length of jtx . 
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Appendix 2 

Table A1 Structural Parameter Estimates for without correcting for selection 

Drink Variable Coef. S.E. 

Fizzy     

 Fizzy Diet 0.172 ** (0.078) 

 Fizzy Vitamins 0.139  (0.136) 

 Fizzy Nocolours 0.053  (0.104) 

 Juice Diet -0.085 * (0.051) 

 Juice Vitamins 0.091  (0.153) 

 Juice Nocolours -0.151  (0.142) 

 Cordial Diet 0.069  (0.068) 

 Cordial Vitamins -0.004  (0.087) 

 Cordial Nocolours -0.059  (0.183) 

 Log Fizzy Price 0.125 ** (0.052) 

 Log Juice Price -0.100 *** (0.024) 

 Log Cordial Price -0.025  (0.052) 

 Log Real Total Expenditure 0.232  (0.181) 

Juice     

 Fizzy Diet -0.122  (0.107) 

 Fizzy Vitamins -0.020  (0.031) 

 Fizzy Nocolours -0.119 *** (0.044) 

 Juice Diet -0.006  (0.040) 

 Juice Vitamins 0.020  (0.070) 

 Juice Nocolours 0.053  (0.039) 

 Cordial Diet -0.079  (0.102) 

 Cordial Vitamins 0.036  (0.070) 

 Cordial Nocolours 0.029  (0.037) 

 Log Fizzy Price -0.100 *** (0.024) 

 Log Juice Price 0.152 *** (0.027) 

 Log Cordial Price -0.053 *** (0.020) 

 Log Real Total Expenditure 0.309 *** (0.037) 

Cordial     

 Fizzy Diet -0.013  (0.153) 

 Fizzy Vitamins -0.014  (0.557) 

 Fizzy Nocolours 0.087  (0.307) 

 Juice Diet -0.024  (0.251) 

 Juice Vitamins -0.120  (0.630) 

 Juice Nocolours -0.031  (0.424) 

 Cordial Diet 0.077  (0.338) 

 Cordial Vitamins -0.109  (0.298) 

 Cordial Nocolours -0.036  (0.229) 

 Log Fizzy Price -0.025  (0.052) 

 Log Juice Price -0.053 *** (0.020) 

 Log Cordial Price 0.078  (0.058) 

 Log Real Total Expenditure -0.396 *** (0.058) 
Note: * Significant at 10%; ** Significant at 5%; *** Significant at 1%. Fizzy Diet: diet Fizzy; Fizzy Vitamins: Fizzy with 

extra vitamins; Fizzy Nocolours: Fizzy with no added colours or preservatives; Juice Diet: Juice with no added sugar; Juice 

Vitamins: Juice with extra vitamins; Juice Nocolours: Juice with no added colours or preservatives; Cordial Diet: diet 

Cordial; Cordial Vitamins: Cordial with extra vitamins; Cordial Nocolours: Cordial with no added colours or preservatives. 
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Table A2 Average Total Expenditure Elasticities and Uncompensated and Compensated Price 

Elasticities for without correcting for selection 

 Fizzy Juice Cordial 

Total expenditure 
0.965*** 1.062*** 0.958*** 

(0.073) (0.011) (0.087) 

Uncompensated 

Fizzy 
-1.083*** 0.014 0.130 

(0.260) (0.028) (0.573) 

Juice 
0.177** -0.988*** -0.184 

(0.074) (0.015) (0.504) 

Cordial 
-0.141*** -0.040*** -1.061*** 

(0.034) (0.010) (0.388) 

Compensated 

Fizzy 
-0.990*** 0.117*** 0.222 

(0.265) (0.028) (0.572) 

Juice 
0.895*** -0.197*** 0.529 

(0.035) (0.018) (0.498) 

Cordial 
0.012 0.128*** -0.909** 

(0.034) (0.009) (0.391) 
Note: Standard errors are in parenthesis. * Significant at 10%; ** Significant at 5%; *** Significant at 1%. 
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Table A3 Average Partial Elasticities w.r.t. Attributes for without correcting for selection 

Drink Attributes Coef. S.E. 

Fizzy     

 Fizzy Diet 0.244 ** (0.111) 

 Fizzy Vitamins 0.197  (0.193) 

 Fizzy Nocolours 0.076  (0.148) 

 Juice Diet -0.12 * (0.072) 

 Juice Vitamins 0.129  (0.218) 

 Juice Nocolours -0.215  (0.201) 

 Cordial Diet 0.098  (0.096) 

 Cordial Vitamins -0.006  (0.123) 

 Cordial Nocolours -0.083  (0.260) 

Juice     

 Fizzy Diet 0.094  (0.073) 

 Fizzy Vitamins -0.049  (0.043) 

 Fizzy Nocolours -0.008  (0.012) 

 Juice Diet -0.048 *** (0.018) 

 Juice Vitamins -0.002  (0.016) 

 Juice Nocolours 0.008  (0.028) 

 Cordial Diet 0.021  (0.016) 

 Cordial Vitamins -0.032  (0.041) 

 Cordial Nocolours 0.014  (0.028) 

Cordial     

 Fizzy Diet -0.090 *** (0.034) 

 Fizzy Vitamins 0.524 *** (0.062) 

 Fizzy Nocolours -0.022  (0.260) 

 Juice Diet -0.023  (0.944) 

 Juice Vitamins 0.148  (0.520) 

 Juice Nocolours -0.041  (0.426) 

 Cordial Diet -0.204  (1.068) 

 Cordial Vitamins -0.053  (0.719) 

 Cordial Nocolours 0.130  (0.573) 
Note: * Significant at 10%; ** Significant at 5%; *** Significant at 1%. Fizzy Diet: diet Fizzy; Fizzy Vitamins: Fizzy with 

extra vitamins; Fizzy Nocolours: Fizzy with no added colours or preservatives; Juice Diet: Juice with no added sugar; Juice 

Vitamins: Juice with extra vitamins; Juice Nocolours: Juice with no added colours or preservatives; Cordial Diet: diet 

Cordial; Cordial Vitamins: Cordial with extra vitamins; Cordial Nocolours: Cordial with no added colours or preservatives. 
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Table A4 Structural Parameter Estimates for observations with household weekly income lower 

than median 

Drink Variable Coef. S.E. 

Fizzy     

 Fizzy Diet 0.066  (0.137) 

 Fizzy Vitamins -0.043  (0.172) 

 Fizzy Nocolours -0.032  (0.131) 

 Juice Diet -0.142 * (0.084) 

 Juice Vitamins -0.131  (0.214) 

 Juice Nocolours 0.036  (0.170) 

 Cordial Diet 0.006  (0.129) 

 Cordial Vitamins -0.204  (0.166) 

 Cordial Nocolours 0.204  (0.197) 

 Log Fizzy Price 0.045  (0.047) 

 Log Juice Price -0.100 *** (0.032) 

 Log Cordial Price 0.056  (0.038) 

 Log Real Total Expenditure 0.213  (0.142) 

Juice     

 Fizzy Diet -0.109  (0.148) 

 Fizzy Vitamins -0.006  (0.042) 

 Fizzy Nocolours -0.157 ** (0.069) 

 Juice Diet 0.039  (0.055) 

 Juice Vitamins 0.129  (0.091) 

 Juice Nocolours 0.023  (0.069) 

 Cordial Diet -0.112  (0.132) 

 Cordial Vitamins 0.183 * (0.097) 

 Cordial Nocolours -0.005  (0.051) 

 Log Fizzy Price -0.100 *** (0.032) 

 Log Juice Price 0.111 *** (0.037) 

 Log Cordial Price -0.011  (0.038) 

 Log Real Total Expenditure 0.308 *** (0.044) 

Cordial     

 Fizzy Diet 0.109  (0.199) 

 Fizzy Vitamins -0.002  (0.184) 

 Fizzy Nocolours 0.409  (0.284) 

 Juice Diet -0.241  (0.462) 

 Juice Vitamins -0.611  (0.564) 

 Juice Nocolours -0.027  (0.353) 

 Cordial Diet -0.079  (0.319) 

 Cordial Vitamins -0.791  (0.802) 

 Cordial Nocolours 0.088  (0.178) 

 Log Fizzy Price 0.056  (0.038) 

 Log Juice Price -0.011  (0.038) 

 Log Cordial Price -0.045  (0.047) 

 Log Real Total Expenditure -0.318 *** (0.080) 
Note: * Significant at 10%; ** Significant at 5%; *** Significant at 1%. Fizzy Diet: diet Fizzy; Fizzy Vitamins: Fizzy with 

extra vitamins; Fizzy Nocolours: Fizzy with no added colours or preservatives; Juice Diet: Juice with no added sugar; Juice 

Vitamins: Juice with extra vitamins; Juice Nocolours: Juice with no added colours or preservatives; Cordial Diet: diet 

Cordial; Cordial Vitamins: Cordial with extra vitamins; Cordial Nocolours: Cordial with no added colours or preservatives. 
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Table A5 Average Total Expenditure Elasticities and Uncompensated and Compensated Price 

Elasticities for observations with household weekly income lower than median 

 Fizzy Juice Cordial 

Total expenditure 
1.094*** 1.054*** 1.093*** 

(0.063) (0.018) (0.062) 

Uncompensated 

Fizzy 
-0.656** 0.089* -0.132 

(0.333) (0.047) (0.532) 

Juice 
0.076 -1.003*** -1.317 

(0.079) (0.024) (1.335) 

Cordial 
-0.170*** -0.048*** -0.854*** 

(0.055) (0.016) (0.297) 

Compensated 

Fizzy 
-0.535 0.205*** -0.012 

(0.336) (0.046) (0.532) 

Juice 
0.845*** -0.262*** -0.548 

(0.056) (0.032) (1.342) 

Cordial 
0.034 0.148*** -0.650** 

(0.055) (0.015) (0.296) 
Note: Standard errors are in parenthesis. * Significant at 10%; ** Significant at 5%; *** Significant at 1%. 
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Table A6 Average Partial Elasticities w.r.t. Attributes for observations with household weekly 

income lower than median 

Drink Attributes Coef. S.E. 

Fizzy     

 Fizzy Diet 0.112  (0.232) 

 Fizzy Vitamins -0.073  (0.291) 

 Fizzy Nocolours -0.054  (0.221) 

 Juice Diet -0.239 * (0.142) 

 Juice Vitamins -0.222  (0.362) 

 Juice Nocolours 0.060  (0.287) 

 Cordial Diet 0.009  (0.219) 

 Cordial Vitamins -0.346  (0.282) 

 Cordial Nocolours 0.344  (0.333) 

Juice     

 Fizzy Diet 0.103  (0.069) 

 Fizzy Vitamins -0.052  (0.071) 

 Fizzy Nocolours -0.003  (0.020) 

 Juice Diet -0.076 ** (0.033) 

 Juice Vitamins 0.019  (0.026) 

 Juice Nocolours 0.062  (0.044) 

 Cordial Diet 0.011  (0.033) 

 Cordial Vitamins -0.054  (0.064) 

 Cordial Nocolours 0.089 * (0.047) 

Cordial     

 Fizzy Diet -0.018  (0.063) 

 Fizzy Vitamins 0.512 *** (0.074) 

 Fizzy Nocolours 0.181  (0.331) 

 Juice Diet -0.003  (0.306) 

 Juice Vitamins 0.680  (0.473) 

 Juice Nocolours -0.401  (0.770) 

 Cordial Diet -1.017  (0.938) 

 Cordial Vitamins -0.045  (0.588) 

 Cordial Nocolours -0.132  (0.532) 
Note: * Significant at 10%; ** Significant at 5%; *** Significant at 1%. Fizzy Diet: diet Fizzy; Fizzy Vitamins: Fizzy with 

extra vitamins; Fizzy Nocolours: Fizzy with no added colours or preservatives; Juice Diet: Juice with no added sugar; Juice 

Vitamins: Juice with extra vitamins; Juice Nocolours: Juice with no added colours or preservatives; Cordial Diet: diet 

Cordial; Cordial Vitamins: Cordial with extra vitamins; Cordial Nocolours: Cordial with no added colours or preservatives. 
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Table A7 Structural Parameter Estimates for observations with household weekly income 

higher than median 

Drink Variable Coef. S.E. 

Fizzy     

 Fizzy Diet 0.132 * (0.079) 

 Fizzy Vitamins 3.597 *** (0.441) 

 Fizzy Nocolours -0.440 *** (0.098) 

 Juice Diet -0.263 *** (0.055) 

 Juice Vitamins 3.146 *** (0.349) 

 Juice Nocolours -0.028  (0.095) 

 Cordial Diet -0.070  (0.074) 

 Cordial Vitamins -0.245 ** (0.101) 

 Cordial Nocolours 0.431 *** (0.079) 

 Log Fizzy Price -0.020  (0.029) 

 Log Juice Price 0.018  (0.030) 

 Log Cordial Price 0.002  (0.011) 

 Log Real Total Expenditure 0.699 *** (0.066) 

Juice     

 Fizzy Diet 0.118  (0.139) 

 Fizzy Vitamins 0.112 ** (0.051) 

 Fizzy Nocolours -0.060  (0.046) 

 Juice Diet 0.009  (0.038) 

 Juice Vitamins 0.170 * (0.090) 

 Juice Nocolours -0.040  (0.048) 

 Cordial Diet 0.187  (0.136) 

 Cordial Vitamins 0.022  (0.066) 

 Cordial Nocolours 0.018  (0.030) 

 Log Fizzy Price -0.099 ** (0.040) 

 Log Juice Price 0.087 ** (0.035) 

 Log Cordial Price -0.105 *** (0.024) 

 Log Real Total Expenditure 0.113 * (0.064) 

Cordial     

 Fizzy Diet -0.033  (0.056) 

 Fizzy Vitamins -0.481 *** (0.137) 

 Fizzy Nocolours 0.165 *** (0.056) 

 Juice Diet 0.044  (0.028) 

 Juice Vitamins -0.428 *** (0.152) 

 Juice Nocolours 0.084 ** (0.040) 

 Cordial Diet -0.031  (0.092) 

 Cordial Vitamins -0.042  (0.056) 

 Cordial Nocolours -0.126 *** (0.027) 

 Log Fizzy Price 0.002  (0.011) 

 Log Juice Price -0.105 *** (0.024) 

 Log Cordial Price 0.103 *** (0.027) 

 Log Real Total Expenditure -0.347 *** (0.039) 
Note: * Significant at 10%; ** Significant at 5%; *** Significant at 1%. Fizzy Diet: diet Fizzy; Fizzy Vitamins: Fizzy with 

extra vitamins; Fizzy Nocolours: Fizzy with no added colours or preservatives; Juice Diet: Juice with no added sugar; Juice 

Vitamins: Juice with extra vitamins; Juice Nocolours: Juice with no added colours or preservatives; Cordial Diet: diet 

Cordial; Cordial Vitamins: Cordial with extra vitamins; Cordial Nocolours: Cordial with no added colours or preservatives. 
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Table A8 Average Total Expenditure Elasticities and Uncompensated and Compensated Price 

Elasticities for observations with household weekly income higher than median 

 Fizzy Juice Cordial 

Total expenditure 
1.780*** 1.039*** 0.400*** 

(0.074) (0.022) (0.068) 

Uncompensated 

Fizzy 
-1.023*** -0.034** 0.004 

(0.032) (0.014) (0.020) 

Juice 
0.020 -0.970*** -0.182*** 

(0.033) (0.012) (0.041) 

Cordial 
0.002 -0.036*** -0.822*** 

(0.013) (0.008) (0.046) 

Compensated 

Fizzy 
-0.873*** 0.053*** 0.037* 

(0.027) (0.014) (0.021) 

Juice 
1.410*** -0.159*** 0.131* 

(0.086) (0.022) (0.077) 

Cordial 
0.243*** 0.104*** -0.768*** 

(0.016) (0.009) (0.044) 
Note: Standard errors are in parenthesis. * Significant at 10%; ** Significant at 5%; *** Significant at 1%. 
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Table A9 Average Partial Elasticities w.r.t. Attributes for observations with household weekly 

income higher than median 

Drink Attributes Coef. S.E. 

Fizzy     

 Fizzy Diet 0.147 * (0.088) 

 Fizzy Vitamins 4.015 *** (0.493) 

 Fizzy Nocolours -0.492 *** (0.109) 

 Juice Diet -0.293 *** (0.061) 

 Juice Vitamins 3.512 *** (0.389) 

 Juice Nocolours -0.031  (0.106) 

 Cordial Diet -0.078  (0.082) 

 Cordial Vitamins -0.274 ** (0.113) 

 Cordial Nocolours 0.481 *** (0.088) 

Juice     

 Fizzy Diet 0.041  (0.048) 

 Fizzy Vitamins 0.039 ** (0.018) 

 Fizzy Nocolours -0.021  (0.016) 

 Juice Diet 0.003  (0.013) 

 Juice Vitamins 0.059 * (0.031) 

 Juice Nocolours -0.014  (0.017) 

 Cordial Diet 0.065  (0.047) 

 Cordial Vitamins 0.008  (0.023) 

 Cordial Nocolours 0.006  (0.010) 

Cordial     

 Fizzy Diet -0.056  (0.097) 

 Fizzy Vitamins -0.831 *** (0.237) 

 Fizzy Nocolours 0.285 *** (0.096) 

 Juice Diet 0.076  (0.049) 

 Juice Vitamins -0.740 *** (0.263) 

 Juice Nocolours 0.146 ** (0.069) 

 Cordial Diet -0.053  (0.159) 

 Cordial Vitamins -0.072  (0.096) 

 Cordial Nocolours -0.218 *** (0.047) 
Note: * Significant at 10%; ** Significant at 5%; *** Significant at 1%. Fizzy Diet: diet Fizzy; Fizzy Vitamins: Fizzy with 

extra vitamins; Fizzy Nocolours: Fizzy with no added colours or preservatives; Juice Diet: Juice with no added sugar; Juice 

Vitamins: Juice with extra vitamins; Juice Nocolours: Juice with no added colours or preservatives; Cordial Diet: diet 

Cordial; Cordial Vitamins: Cordial with extra vitamins; Cordial Nocolours: Cordial with no added colours or preservatives. 
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