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ABSTRACT

Economists studying choice with partial knowledge typically assume that the decision maker places

a subjective distribution on unknown quantities and maximizes expected utility.  Someone lacking

a credible subjective distribution faces a problem of choice under ambiguity.  This article reviews

recent research on policy choice under ambiguity, when the task is to choose treatments for a

population.  Ambiguity arises when a planner has partial knowledge of treatment response and,

hence, cannot determine the optimal policy. I first discuss dominance and alternative criteria for

choice among undominated policies. I then illustrate with choice of a vaccination policy by a planner

who has partial knowledge of the effect of vaccination on illness.  I next study a class of problems

where a planner may want to cope with ambiguity by diversification, assigning observationally

identical persons to different treatments.  Lastly, I consider a setting where a planner should not

diversify treatment.

Keywords: dominance, minimax regret, partial identification, planning, social choice, treatment

response
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1. Introduction

When studying collective decision problems, economists have long asked how an optimizing

social planner should behave.  A standard exercise specifies a set of feasible policies and a welfare

function.  The planner is presumed to know the welfare achieved by each policy.  The objective is

to characterize the optimal policy. 

In practice, we typically have only partial knowledge of the welfare achieved by alternative

policies.  Hence, we cannot determine optimal policies.  This limits the relevance of the standard

exercise to actual policy analysis.

Research on optimal income taxation illustrates the problem.  Stimulated by Mirrlees (1971),

many theoretical studies have derived optimal tax schedules under the assumption that the planner

knows how alternative tax schedules affect labor supply.  However, knowledge of the actual

responsiveness of labor supply to income taxes remains limited, despite the strenuous effort of

empirical economists to shed light on the matter.

A fundamental source of partial knowledge is the identification problem arising from

unobervability of counterfactual policy outcomes.  At most one can observe the outcomes that have

occurred under realized policies.  The outcomes of unrealized policies are logically unobservable.

Yet determination of an optimal policy requires prospective comparison of all feasible policies.

Practical problems of data collection enlarge the gap between the information that a planner

would like to have and the evidence that is available.  The mundane fact that data collection is costly

may constrain researchers to study small samples of survey respondents or experimental subjects.

A planner may want to learn long-term policy outcomes, whereas empirical research may only

measure short-term outcomes.  Survey respondents may refuse to answer or may respond



2

inaccurately to questions about their environments and outcomes.  Experimental subjects may not

comply with assigned treatments or may drop out of trials before their outcomes are measured.

These and other inferential problems have long been central concerns of econometrics and

of empirical research in economics.  Yet their implications for policy choice have remained largely

unacknowledged in theoretical studies.

Social choice theory rarely makes any reference to uncertainty, never mind to specific

inferential problems.  The subject is not addressed in either the first or second edition New Palgrave

articles on social choice (Sen, 1987; Bossert and Weymark, 2008).  Research on mechanism design

has studied planning in asymmetric-information settings, where heterogeneous agents possess private

information about themselves.  However, it is usually assumed that the planner knows the population

distribution of unobserved agent characteristics and can optimize given this knowledge.  For

example, the planner of optimal income tax theory does not know the utility functions of individual

agents but is assumed to know the population distribution of utility functions.

 When economists have studied planning with partial knowledge, it has been standard to

assert a subjective probability distribution over unknown decision-relevant quantities and propose

choice of a policy that maximizes subjective expected welfare.  For example, Nordhaus (2008)  used

this approach to express partial knowledge of parameter values in his assessment of global warming

policy.  Meltzer (2001) applied the expected utility criterion to medical decision making and Dehejia

(2005) to evaluation of welfare programs. 

Maximization of subjective expected welfare is reasonable when a planner has a credible

basis for asserting a subjective distribution on unknown quantities.  However, a subjective

distribution is a form of knowledge, and a planner may not have a credible basis for asserting one.
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 Use of the term ambiguity to describe the absence of a basis for assertion of a subjective1

distribution appears to have originated in Ellsberg (1961).  The term uncertainty was used in Keynes

(1920) and Knight (1920).  Some modern authors refer to ambiguity as Knightian uncertainty.

Then the planner faces a problem of choice under ambiguity.1

This article reviews my recent research on policy choice under ambiguity.  Beginning in

Manski (1990, 1995),  I have studied how problems of partial identification that are prevalent in

empirical research generate ambiguity about optimal policies.  Beginning in Manski (2000), I have

considered how a planner might reasonably make policy choices when the welfare function is

partially identified.  Beginning in Manski (2004), I have studied planning using sample data.  Manski

(2007, Chapters 7 through 12) exposits findings at a level accessible to first-year Ph.D. students in

economics.

The planning problems that I have studied share a relatively simple structure.  The task is to

choose treatments for a population whose members may vary in their response to treatment.  The

social welfare function sums the outcomes of the population members.  Ambiguity arises when a

planner has partial knowledge of treatment response and, hence, cannot determine the optimal policy.

Here are three illustrations, among many that might be given.

Choosing Medical Treatments: Consider a health agency that must treat a population of persons who

are susceptible to a disease.  The relevant outcome is the health benefit of a treatment minus its cost,

measured in comparable units.  A utilitarian welfare function sums these net benefits across the

population.  The problem is that medical science yields only partial knowledge of treatment

response.  Hence, determination of an optimal treatment rule may not be possible.    ~
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Choosing Sentences for Convicted Offenders: Consider a judge who must choose sentences for a

population of convicted offenders.  The relevant outcome may be recidivism by these offenders; that

is, their future criminality. The problem is that criminologists have found it difficult to learn how

sentencing affects recidivism.  Hence, a judge may not know the optimal sentencing policy.   ~

An Investor’s Asset Allocation Decision: Consider an investor who must allocate an endowment

between two assets.  The population members are dollars of endowment and the treatments are the

two assets.  The relevant outcome is the return on a dollar invested in an asset.  The analog of

welfare is the aggregate return earned by the investor.  At the time of the allocation decision, the

investor may have only partial knowledge of investment returns.  Hence, he may not know what

allocation maximizes profit.   ~

Whereas the first two illustrations concern policy choice, the third poses a classic problem of private

decision making.  Nevertheless, asset allocation shares the formal structure of the planning problems

I have studied, and the findings apply to it.

This article is organized as follows.  Section 2 sets forth the basic ideas on choice under

ambiguity that have guided my study of policy choice when the welfare function is partially

identified.  I begin with the orthodox notion that a decision maker facing ambiguity should eliminate

dominated actions from consideration.  However, I depart from orthodoxy by arguing that

maximization of subjective expected utility deserves no privileged status as a criterion for choosing

an undominated action.  I suggest that the maximin and the minimax-regret criteria merit serious

consideration.
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Section 3 presents an illustrative case study.  Manski (2010a) considers choice of a

vaccination policy when a health planner has partial knowledge of the external effect of vaccination

on the illness rate of unvaccinated persons.  Beyond its intrinsic interest, this work demonstrates how

one may address a class of choice problems where a planner observes the outcome of a status-quo

policy and feels able to partially extrapolate from the status quo to counterfactual policies.  I first

show how the planner can eliminate dominated vaccination rates and then how he can use the

minimax or minimax-regret criterion to choose an undominated vaccination rate.

Section 4 summarizes some of the analysis of Manski (2009), which develops a broad theme

about treatment under ambiguity through study of a particular decision criterion.  The broad theme

is that a planner may want to cope with ambiguity by diversification, assigning observationally

identical persons to different treatments.  Study of the minimax-regret criterion substantiates the

theme.  I show that this criterion always diversifies treatment when a planner must allocate the

population to two treatments, and does not know which treatment is better.  The adaptive minimax-

regret criterion extends the analysis to dynamic settings, where the planner allocates a sequence of

cohorts to treatment and can use outcomes observed from earlier treatment decisions to inform later

decisions.

Sections 3 and 4 studied settings where each member of the population receives one of two

treatments and where treatment response may vary across the population.  Section 5 considers a

scenario with a different structure, examined in Manski (2010b).  Now the feasible treatments are

a convex set, and treatment response is given by a common concave function that maps the treatment

and the state of nature into an outcome.  I show that the planner should not diversify treatment in this

setting.  Any fractional allocation is dominated by one that gives all members of the population the
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mean treatment.

The ambiguity studied in this article arises from partial identification of the welfare function.

A planner who observes only a sample of a study population must cope with statistical ambiguity

as well as with identification problems.  Review of research on planning with sample data is beyond

the scope of this article.  I refer the reader to Manski (2004; 2007, Chapter 12), Manski and Tetenov

(2007), Hirano and Porter (2009), Stoye (2009, 2010), and Tetenov (2009) for recent contributions

that apply the Wald (1950) development of statistical decision theory.

Readers with a macroeconomic orientation may ask how the work described in this article

relates to the contemporaneous program of research on robust macroeconomic policy; see Barlevy

(2010) for a review and references.  The two research programs share a broad concern with policy

choice under ambiguity, but they have differed in many important respects.  Methodologically, the

macroeconomic research has focused on the maximin criterion, whereas I have first studied

dominance and then mainly applied the minimax-regret criterion to choose an undominated policy.

Substantively, macroeconomists have studied problems requiring the planner to choose a policy that

applies to the entire population, whereas I have studied ones where the planner may choose a

separate treatment for each member of the population.

Another important difference in the research programs concerns the maintained assumptions.

Macroeconomists have usually assumed that the actual process driving the economy is a perturbation

of some benchmark model.  I have typically maintained relatively weak shape restrictions and

distributional assumptions about treatment response.

Some readers may ask how the work described here relates to sensitivity analysis.  See

Weycker et al. (2005) for an example in the context of vaccination policy.  Sensitivity analysis aims
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to determine optimal policy under a specified set of alternative assumptions.  It does not provide a

criterion for choice with partial knowledge, when one does not know which assumption is correct.

2. Choice under Ambiguity

This section reviews basic ideas about choice under ambiguity.  I consider an agent—perhaps

a firm, an individual, or a planner—who must choose an action yielding welfare that depends on an

unknown state of nature.  The agent has an objective function and beliefs, which I take as primitives.

His problem is to choose an action without knowing the actual state of nature.

Formally, the agent faces choice set C and knows (or believes) that the actual state of nature

lies in some set S.  The objective function w(A, A): C × S 6 R  maps actions and states into welfare.1

For example, w(A, A) may be the profit function of a firm, the utility function of a consumer, or the

welfare function of a planner.  The agent wants to maximize w(A, r), where r is the actual state of

nature, but he does not know r.  He only knows that r 0 S.

2.1. Dominance

How should the decision maker choose among the actions in C?  The only prescription that

I think warrants universal acceptance is respect for weak dominance.  Action c 0 C is weakly

dominated if there exists a d 0 C such that w(d, s) $ w(c, s) for all s 0 S and w(d, s) > w(c, s) for

some s 0 S.  Respect for weak dominance means than an agent should not choose a weakly
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dominated action.  This prescription is uniquely compelling because weak dominance defines the

circumstances in which an agent who wants to maximize w(A, r) knows that choice of one action

improves on choice of another.

Let D denote the undominated subset of C.  How should the decision maker choose among

the elements of D?  Let c and d be two undominated actions.  Then either [w(c, s) = w(d, s), all s 0

S] or there exist sN 0 S and sO 0 S such that w(c, sN) > w(d, sN) and w(c, sO) < w(d, sO).  In the former

case, c and d are equally good choices and the decision maker is indifferent between them.  In the

latter case, the decision maker cannot order the two actions.  Action c may yield a better or worse

outcome than action d; the decision maker cannot say which.  Thus, the normative question “How

should the decision maker choose?” has no unambiguously correct answer.

2.2. Optimization of Known Transformations of the Welfare Function

Although there is no optimal choice among undominated actions, decision theorists have not

wanted to abandon the idea of optimization.  So they have proposed various ways of transforming

the unknown objective function w(A, A) into a function of actions alone, which can be maximized.

In principle, one should maximize this function only over the undominated actions D.  However, it

often is difficult to determine which actions are undominated.  Hence, it is common to perform the

maximization over the full set C of feasible actions.

One idea is to average the elements of S and maximize the resulting function.  This yields

maximization of expected utility.  Another is to seek an action that, in some well-defined sense,

works uniformly well over all elements of S.  This yields the maximin and minimax-regret criteria.
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The Expected Utility Criterion

Many decision theorists suggest that a decision maker who knows only that the true state of

nature lies in S should choose an action that maximizes some average of w(A, A) over the elements

of S.  Let ð be a specified probability distribution on S.  For each feasible action c, let Iw(c, s)dð be

the mean value of w(c, s), calculated with respect to ð.  The expected utility criterion solves the

optimization problem

(1)      max  Iw(c, s)dð.
           c 0 C

In general, the solution to (1) depends on the distribution ð placed on S.  Bayesian decision

theorists recommend that ð should express the decision maker’s personal beliefs about where r lies

within S.  Hence, ð is called a subjective probability distribution.

The Maximin Criterion

The maximin criterion suggests that the decision maker choose an action that maximizes the

minimum welfare attainable across the elements of S.  For each feasible action c, consider the

s 0 Sminimum feasible value of w(c, s); that is, min  w(c, s).  A maximin rule chooses an action that

solves the optimization problem

(2)           max     min    w(c, s). 
               c 0 C     s 0 S

The maximin criterion has a clear normative foundation in competitive games.  In a
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competitive game, the decision maker chooses an action from C.  Then a state from S is chosen by

an opponent whose objective is to minimize the realized outcome.  A decision maker who knows

that he is a participant in a competitive game does not face ambiguity.  He faces the problem of

maximizing the known function specified in the maximin rule.

There is no compelling reason why a decision maker should or should not use a maximin rule

when r is a fixed but unknown state.  In this setting, the appeal of the maximin criterion is a personal

rather than normative matter.  Some decision makers may deem it essential to protect against worst-

case scenarios, while others may not.  Wald (1950), who studied the maximin criterion in depth, did

not contend that a maximin rule is optimal, only that it is “reasonable.”  Considering the case in

which the objective is to minimize rather than maximize w(A, r), he wrote (Wald, 1950, p. 18): “a

minimax solution seems, in general, to be a reasonable solution of the decision problem.”

The Minimax-Regret Criterion

The minimax-regret criterion has the decision maker choose an action that minimizes the

maximum loss to welfare that results from not knowing the objective function.  A minimax-regret

choice solves the problem

(3)      min  max   [max w(d, s) ! w(c, s)].
          c 0 C  s 0 S      d 0 C

d 0 CHere max  w(d, s) ! w(c, s) is the regret of action c in state of nature s; that is, the welfare loss

associated with choice of c relative to an action that maximizes welfare in state s.  The actual state

is unknown, so one evaluates c by its maximum regret over all states and selects an action that
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minimizes maximum regret.

The maximin and minimax-regret criteria are sometimes confused with one another.

Comparison of (2) and (3) shows that they are generally distinct.  The two criteria coincide only in

d 0 Cspecial cases.  Suppose in particular that max  w(d, s) is constant for all s 0 S.  Then minimax-

regret reduces to maximin.

Maximization of expected utility is formally equivalent to minimization of expected regret.

c 0 C ðThe usual description of the expected utility criterion is max  E [w(c, s)].  The expected regret

ð d 0 C ð d 0 C ðof action c is E  [max  w(d, s) ! w(c, s)]  = E  [max  w(d, s)] ! E [w(c, s)].  The first term on

the right-hand side does not vary with action c.  Hence, minimization of expected regret is equivalent

to maximization of expected utility.

Other Decision Criteria

The three criteria for decision making under ambiguity discussed above are particularly well-

known, but they are not the only ones that have received attention.  A decision maker who feels able

to assert a subjective distribution on the states of nature need not maximize expected utility.  He

could instead maximize some quantile of the utility distribution (see Manski, 1988).  A decision

maker who feels able to assert only a partial distribution on the states of nature could maximize

minimum expected utility or minimize maximum expected regret.  These ideas have a long history

in the literature on statistical decision theory, which refers to them as the Ã-maximin and Ã-minimax

regret criteria (see Berger, 1985).  The Ã-maximin approach has also drawn considerable attention

from economists (e.g., Gilboa and Schmeidler, 1989).
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2.3. Axiomatic and Actualist Rationality

Decision theorists have often asserted pre-eminence for maximization of expected utility,

asserting not only that a decision maker might use this decision criterion but that he should do so.

Reference is often made to representation theorems deriving the expected utility criterion from

consistency axioms on hypothetical choice behavior, famously von Neumann and Morgenstern

(1944) and Savage (1954).  These and other contributions to axiomatic decision theory consider a

decision maker who has formed a complete binary preference ordering over a specified class Á of

actions and, thus, who knows how he would behave if he were to face any choice set D d Á.  The

theorems show that if the preference ordering adheres to certain consistency axioms, then the agent

may be represented as maximizing expected utility.  Thus, the theorems of axiomatic decision theory

are interpretative rather than prescriptive.

Why then are the N-M and Savage theorems often considered to be prescriptive?  Decision

theorists often assert that an agent should form a complete binary preference ordering on the class

Á of actions and that preferences should adhere to the proposed axioms.  If one accepts these

assertions, the theorems imply that the agent should behave in a manner representable as

maximization of expected utility.  Thus, the theorems are prescriptive if one considers their

consistency axioms to be compelling.

A famous example is the Chernoff (1954) argument against the minimax regret criterion. 

Chernoff observed that this criterion can violate the consistency axiom called independence of

irrelevant alternatives (IIA).  The IIA axiom holds that if an agent is not willing to choose a given

action from a hypothetical choice set, then he should not be willing to choose it from any larger
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hypothetical choice set; thus, for any c 0 D d E, an agent who would not choose c from D should not

choose c from E.  Chernoff wrote (p. 426):

“A third objection which the author considers very serious is the following.  In some

3examples, the min max regret criterion may select a strategy d  among the available strategies

1 2 3 4 4d , d , d , and d .  On the other hand, if for some reason d  is made unavailable, the min max

2 1 2 3regret criterion will select d  among d , d , and d .  The author feels that for a reasonable

4criterion the presence of an undesirable strategy d  should not have an influence on the

choice among the remaining strategies.”

This passage is the totality of Chernoff’s argument. He introspected and concluded that any

reasonable decision criterion should adhere to IIA, without explaining why he felt this way.  He did

not argue that minimax-regret decisions have adverse welfare consequences.

I will not use consistency axioms to argue for or against particular decision criteria.  In

Manski (2010c), I have observed that a decision maker who wants to choose an optimal policy but

lacks the knowledge to do so is not concerned with the consistency of his behavior across

hypothetical choice sets.  Rather, he wants to make a reasonable choice from the choice set that he

actually faces.  Hence, I reason that prescriptions for decision making should respect actuality.  That

is, they should promote welfare maximization in the choice problem the agent actually faces.

Expected utility maximization respects actuality, but it has no special status from the actualist

perspective.
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3. Vaccination under Ambiguity

3.1.Background

The problem of choosing an optimal vaccination policy for a population susceptible to

infectious disease has drawn considerable attention from epidemiologists and some from economists

as well.  Researchers studying optimal vaccination have typically assumed the planner knows how

vaccination affects illness rates.  See, for example, Ball and Lyne (2002), Becker and Starczak

(1996), Brito, Sheshinski, and Intriligator (1991), Boulier, Datta, and Goldfarb (2007), Hill and

Longini (2003), Patel, Longini, and Halloran (2005), and Scuffham and West (2002).

There are two reasons why a planner may have only partial knowledge of the effect of

vaccination on illness.  First, the planner may only partially know the internal effectiveness of

vaccination in generating an immune response that prevents a vaccinated person from become ill or

infectious.  Second, he may only partially know the external effectiveness of vaccination in

preventing transmission of disease to members of the population who are unvaccinated or

unsuccessfully vaccinated.

The second issue is particularly problematic.  A standard randomized clinical trial, which

vaccinates an experimental group of individuals, enables evaluation of the internal effectiveness of

vaccination.  However, the trial does not reveal the external effect of applying different vaccination

rates to the population.  The outcome data only reveal the external effectiveness of the chosen

vaccination rate.  The outcomes with other vaccination rates remain counterfactual, yet choice of a

vaccination policy requires comparison of alternative rates.



15

Attempting to cope with the absence of empirical evidence, researchers have used

epidemiological models to forecast the outcomes that would occur with counterfactual vaccination

policies.  The articles on optimal vaccination cited earlier use a variety of such models.  However,

authors typically provide little information that would enable one to assess the accuracy of their

assumptions about individual behavior, social interactions, and disease transmission.  Hence, it is

prudent to view their forecasts more as computational experiments predicting outcomes under

specific assumptions than as accurate predictions of policy impacts.

Manski (2010a) studies choice of vaccination policy when a planner has partial knowledge

of the external effectiveness of vaccination.  I suppose that the planner’s objective is to minimize

the social cost of illness and vaccination.  The consequences of alternative vaccination rates depend

on the extent to which vaccination prevents illness.  I suppose that the planner observes the illness

rate of a study population whose vaccination rate has been chosen previously.  He assumes that the

illness rate of unvaccinated persons weakly decreases as the vaccination rate increases, but he does

not know the magnitude of the preventive effect of vaccination.   In this setting, I first show how the

planner can eliminate dominated vaccination rates and then how he can use the minimax or

minimax-regret criterion to choose an undominated rate.  Sections 3.2 through 3.4 summarize the

analysis and findings.  Section 3.5 discusses related planning problems.

3.2. Optimal Vaccination

As prelude to consideration of vaccination under ambiguity, I specify the optimization

problem that the planner wants to solve and derive the solution in an illustrative case.
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 Supposing that members of the population are observationally identical does not mean that2

persons actually are identical, only that the planner cannot distinguish them.  If the planner observes

health-relevant covariates for each person, he may want to choose vaccination rates that vary with

these covariates.  The present analysis extends easily to such settings if the external effect of

vaccination occurs only within groups defined by observed covariates and not between groups.  It

also extends to settings where vaccination has imperfect, but known, internal effectiveness.  See

Manski (2010a), Sec. 4.

For simplicity, I suppose here that the planner must choose the vaccination rate for a large

population of observationally identical persons, and I assume that vaccination always prevents a

vaccinated person from becoming ill.   Let p(t) be the external-response function, giving the fraction2

of unvaccinated persons who become ill when the vaccination rate is t.  Then the fraction of the

population who become ill is p(t)(1 ! t).

I suppose the planner wants to minimize a social cost function with two additive components.

These are the harm caused by illness and the cost of vaccination.  Let a > 0 denote the mean social

harm caused by illness and let c > 0 denote the mean social cost per vaccination, measured in

commensurate units.  The social cost of vaccination rate t is

(4)      K(t)  =  ap(t)(1 ! t) + ct.

 

The first term on the right-hand side gives the aggregate cost of illness, and the second gives the

aggregate cost of vaccination.  This simple social cost function expresses the core tension of

vaccination policy: a higher vaccination rate is more effective in preventing illness but is more
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 In the notation of Section 2, the set S of states of nature is the set of external-response3

functions that the planner deems feasible.  The choice set is C = [0, 1].  Welfare function w is the

negative of social cost function K.

costly. 

t 0 [0, 1]The planner wants to solve the problem min  K(t).  The optimization problem is

invariant to the scale of K(@).  Hence, without loss of generality, I let a = 1 and interpret c as the ratio

of the mean social cost of vaccination to the mean social cost of illness.3

The planner’s problem is solvable if the external-response function is known.  Suppose it is

known to be linear, with p(t) = ñ(1 ! t) and 0 < ñ # 1.  Thus, the illness rate of unvaccinated persons

is ñ if no one is vaccinated and decreases linearly to zero as the vaccination rate rises.  Then the

optimal vaccination rate is

(5)      t   =  argmin ñ(1 ! t)  + ct.* 2

                   t 0 [0, 1]

The quadratic first term of the social cost function is minimized at t = 1, and the linear second

term at t = 0.  The optimal vaccination rate must resolve this tension.  The optimal rate is

(6)       t   =  0                   if  2ñ < c.*

                =   1 ! c/(2ñ)    if  2ñ $ c.

Observe that for no value of parameters (c, ñ) is it optimal to vaccinate the entire population.  It is,

however, optimal to vaccinate no one if 2ñ < c.
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3.3. Partial Knowledge of External Effectiveness

To demonstrate how a planner with partial knowledge of external effectiveness may choose

a vaccination rate, I consider decision making in a particular informational setting.  I suppose that

the planner observes the vaccination and illness rates of a study population, whose vaccination rate

has been chosen previously to be some value less than one.  I have the planner maintain two

assumptions.  First, he assumes that the study population and the treatment population have the same

external-response function.  Second, he assumes that the illness rate of unvaccinated persons weakly

decreases as the vaccination rate increases.  However, he makes no assumption about the magnitude

of the external effect of vaccination.

Let r < 1 denote the observed vaccination rate in the study population and q(1 ! r) denote the

observed realized illness rate.  The two maintained assumptions are

Assumption 1 (Study Population): The planner observes r and q(1 ! r).  He knows that q = p(r).

Assumption 2(Vaccination Weakly Prevents Illness): The planner knows that p(t) is weakly

decreasing in t.

Taken together, these assumptions imply that

(7)     t # r  Y  p(t) $ q,

          t $ r  Y  p(t) # q.
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This knowledge of the external response function is much weaker than the traditional

assumption that the planner knows the function.  Moreover, Assumptions 1 and 2 often are credible.

It often is possible to observe the vaccination and illness rates of a study population, and credible

to assume that the study and treatment populations have similar if not identical external-response

functions.  It usually is credible to assume that vaccination weakly prevents illness.  Assumption 2

is a specific instance of the general idea of monotone treatment response developed in Manski

(1997).

Given the empirical evidence and assumptions, I show that a candidate vaccination rate t is

strictly dominated if any of these conditions hold:

(a)  Let c < q.  Then t is strictly dominated if t < r.

(b)  Let c > q.  Then t is strictly dominated if t > r + q(1 ! r)/c.

(c)  Let c > 1.  Then t is strictly dominated if (1 ! q)/(c ! q) < t # r or if t > max (r, 1/c). 

It might have been thought that Assumptions 1 and 2 are too weak to yield interesting dominance

findings.  However, the proposition shows that these assumptions have considerable power.  The

broad finding is that small (large) values of t are dominated when the vaccination cost c is

sufficiently small (large).  Parts (a) through (c) give the specifics.

With dominated vaccination rates eliminated from consideration, the planner must still

choose among the undominated rates.  I derive the minimax and minimax-regret rates.

  The minimax criterion selects the vaccination rate that minimizes maximum social cost over

all feasible external-response functions.  The minimax rate turns out to be
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(8)     t   =  0                     if      c > 1 and 1 # q(1 ! r) + cr,m

               =  r                     if      c > 1 and 1 $ q(1 ! r) + cr

                                          or if   q < c < 1,

               =  all t 0 [0, 1]   if c = q and q = 1, 

               =  all t 0 [r, 1]    if c = q and q <1,

               =  1             if     c < q.

Thus, the minimax rate generically takes one of the three values (0, r, 1), the only exception being

when c = q, which has multiple maximin rates.  All else equal, the minimax rate weakly decreases

with the vaccination cost c.  It weakly increases with the realized illness rate q if c < 1 and decreases

with q otherwise.

The regret of vaccination rate t measures the difference between the social cost delivered by

rate t and that delivered by the best possible rate.  The minimax-regret criterion selects the

vaccination rate that minimizes maximum regret across all feasible external response functions.  I

show the following:

(a) Let c # q.  Then the minimax-regret vaccination rate is

(9a)     t   =   (q + cr)/(q + c).mr

(b)  Let c > q.  Then the minimax-regret vaccination rate is
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(9b)    t   =  argmin 1[t < r]@{max [(1 ! q)(1 ! t), (1 ! t) + c(t ! r), (c ! q)t]}mr

                     t 0 [0, 1]

                                                          + 1[t $ r]@{max [q(1 ! t), c(t ! r), (c ! q)t]}.

Thus, as the cost c of vaccination increases from 0 to q, the minimax-regret vaccination rate

decreases continuously from 1 to (1 + r)/2.  In contrast, the minimax rate equals 1 whenever c # q.

When c > q, the solution to the minimax-regret problem generally does not have an explicit form of

simplicity comparable to the minimax problem.  However, the abstract finding in (9b) simplifies in

the polar case r = 0, where no one was vaccinated in the study population.  Then t   =  q/(q + c).mr

3.4. Numerical Examples

Numerical examples are useful to illustrate the above findings.  Here are three, each

modifying the preceding example in some respect.

First consider a scenario where the mean cost of vaccination (relative to illness) is c = 0.05.

The planner observes a study population with no vaccination (r = 0) and with illness rate q = 1/5.

In this setting, a planner who believes the external-response function is linear would conclude that

ñ = 1/5 and would choose the vaccination rate t  = 7/8.  A planner who only knows the function to*

be weakly decreasing would not be able to conclude that any vaccination rates are dominated,

because c < q and r = 0.  The minimax vaccination rate is t  = 1 and the minimax-regret rate is tm mr

= 4/5.

Next revise the scenario by supposing that the planner observes a study population where r

= 1/2 and q = 1/10.  Continue to assume that c = 0.05.  A planner who believes the external-response
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function is linear would still conclude that ñ = 1/5 and choose t  = 7/8.  A planner who only knows*

the function to be weakly decreasing can determine that any vaccination rate smaller than 1/2 is

strictly dominated.  The minimax vaccination rate remains t  = 1 and the minimax-regret rate is tm mr

= 5/6.

Now revise the scenario again by supposing that vaccination is more costly relative to illness,

say c = 0.25.  Continue to assume that r = 1/2 and q = 1/10.  In this case, a planner who believes the

external-response function is linear would choose t  = 3/8.  A planner who only knows the function*

to be weakly decreasing can conclude that any vaccination rate larger than 7/10 is strictly dominated.

The minimax and the minimax-regret vaccination rates are both 1/2.

3.5. Related Planning Problems

The scenario considered above is realistic enough to demonstrate key ideas about vaccination

under ambiguity, but is idealized enough to yield simple findings.  Manski (2010a) also discusses

several extensions that are more realistic but more complex.  I show how the analysis extends to

settings where vaccination has imperfect but known internal effectiveness.  I generalize the planning

problem to settings where population members have observable covariates.  I consider provision of

incentives for private vaccination when the planner cannot mandate vaccination.  And I discuss

dynamic planning problems where a planner vaccinates a sequence of cohorts, using observation of

past outcomes to inform present decisions.

Looking beyond vaccination, the analysis demonstrates how one may address a class of

choice problems where a planner observes the outcome of a status-quo policy and feels able to
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partially extrapolate to counterfactual policies.  Manski (2006) gives another demonstration.  There

I studied the criminal-justice problem of choosing a rate of search for evidence of crime, when a

planner has partial knowledge of the deterrent effect of search on the rate of crime commission.  I

considered a planner who wants to minimize the social cost of crime, search, and punishment.  The

planner observes the crime rate under a status-quo search rate and assumes that the crime rate falls

as the search rate rises.  The formal structure of this planning problem is similar to that of the

vaccination problem, the substantive difference between the two notwithstanding.

4. Diversified Treatment Choice

4.1. Background

In the Introduction, I cited allocation of an endowment between two assets as a planning

problem. When an investor is unsure which asset will yield the higher return, it is common to

recommend that he should hold a diversified portfolio.  That is, he should allocate a positive fraction

of the endowment to each asset.  Traditional formal arguments for diversification assume that the

investor maximizes subjective expected utility and is risk averse.

Diversification may also be appealing when a social planner must treat a population of

persons and does not know the optimal treatment.  Let there be two feasible treatments, labeled a and

b.  The broad argument for diversification is that it enables the planner to balance two types of

potential error.  A Type A error occurs when treatment a is chosen but is actually inferior to b, and
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a Type B error occurs when b is chosen but is inferior to a.  The singleton allocation assigning the

entire population to treatment a entirely avoids type B errors but may yield Type A errors, and vice

versa for singleton assignment to treatment b.  Fractional allocations make both types of errors but

reduce their potential magnitudes.

A formal argument for diversified policy choice may be made by supposing that the planner

maximizes subjective expected welfare and is risk averse.  But what about scenarios where the

planner lacks a credible subjective distribution over treatment outcomes?  Manski (2007, Chapter

11; 2009) considers the minimax-regret (MR) criterion and shows that it always yields a diversified

treatment allocation when the planner faces ambiguity.  The MR criterion chooses an allocation that

balances the potential welfare losses from Type A and Type B errors.  This allocation turns out

always to be fractional when the better treatment is not known.

In this section, I summarize the most basic parts of my analysis.  I focus on a simple setting

where treatment is known to be individualistic, welfare is a linear function of individual outcomes,

and members of the population are observationally identical.  This setting eliminates several possible

reasons for differential treatment of a population.

Individualistic treatment means that the outcome experienced by a person may depend only

on the treatment he receives, not on the treatments of other members of the population.  This

eliminates the external effectiveness that was essential to analysis of vaccination in Section 3.

Welfare being a linear function of individual outcomes means that a planner who maximizes

expected welfare is risk-neutral.  This eliminates the traditional argument for diversification based

on risk aversion.

Considering a population of observationally identical people eliminates the possibility of
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profiling; that is, systematic differentiation among persons who vary in observable respects.  It is

well known that enabling treatment choice to vary systematically with observed covariates of

population members can improve welfare if treatment response varies with these covariates.  See,

for example, Manski (2007, Chapter 11).  In contrast, diversification randomly differentiates among

persons who are observationally identical.

Section 4.2 summarizes the basic analysis, which considers a one-period planning problems.

Section 4.3 discusses the ethical issue of “equal treatment of equals” as it arises with diversified

treatment.  Section 4.4 extends the basic analysis to multi-period planning problems, where the

planner may use observation of treatment outcomes in earlier periods to inform treatment choice in

later periods.  This yields a recommendation for adaptive diversification.

4.2. One-Period Planning with Individualistic Treatment and Linear Welfare

4.2.1. Concepts and Notation

Let there be two treatments, labeled a and b.  The set of feasible treatments is T / {a, b}.

jEach member j of a population denoted J has a response function y (@): T 6 Y that maps treatments

j jt 0 T into outcomes y (t) 0 Y.  The subscript j in y (@) indicates that treatment response may vary

j jacross the population.  Let u (t) / u [y(t), t] denote the net contribution to welfare that occurs if

j jperson j receives treatment t and realizes outcome y (t).  For example, u (t) may have the “benefit-

j j1 j2 j1 j2cost” form u (t) = y (t) ! y (t), where y (t) is the benefit of treatment t and y (t) is its cost.  Although

treatment response may vary across the population, persons are observationally identical to the
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planner.

Let P[y(@)] denote the population distribution of treatment response.  I suppose that the

population is large in the formal sense of being atomless; that is, P(j) = 0 for all j 0 J.  This

idealization eliminates sampling variation as an issue when considering diversified treatment choice.

The planner’s task is to allocate the population between the two treatments.  A treatment

allocation is a ä 0 [0, 1] that randomly assigns a fraction ä of the population to treatment b and the

remaining 1 ! ä to treatment a.  I assume that the planner wants to choose a treatment allocation that

maximizes mean welfare in the population.  Let á / E[u(a)] and â / E[u(b)] be the mean welfare that

would result if all persons were to receive treatment a or b respectively.  Welfare with allocation ä

is

(10)       W(ä)  =  á(1 ! ä) + âä  =  á + (â ! á)ä.

W(@) is a consequentialist welfare function that additively aggregates individual contributions to

welfare.

The optimal treatment allocation is obvious if (á, â) are known.  The planner should choose

ä = 1 if the average treatment effect â ! á is positive and ä = 0 if it is negative.  The problem of

interest is treatment choice when the sign of the average treatment effect is unknown.

To formalize the problem, let S index the feasible states of nature.  Thus, the planner knows

s s(or believes) that (á, â) lies in the set [(á , â ), s 0 S].  This set is the identification region for (á, â);

that is, the set of values of (á, â) that the planner concludes are feasible when he combines available

empirical evidence with assumptions he finds credible to maintain.  The present analysis is
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s s Lapplicable when [(á , â ), s 0 S] is bounded.   Let the extreme feasible values of á and â be á  / min

s 0 S s L s 0 S s U s 0 S s U s 0 S s á , â  / min  â , á  / max  á , and â  / max  â .  Manski (2007) exposits many specific

cases, showing the form that the region takes when observation of realized treatment outcomes in

a study population is combined with various assumptions about treatment response and selection.

s s s sPartial knowledge is unproblematic for decision making if (á  $ â , s 0 S) or if  (á  # â , s 0

S); choosing ä = 0 is optimal in the former case and ä = 1 in the latter.  The planner faces ambiguity

s s s sif both treatments are undominated; that is, if á  > â  for some values of s and á  < â  for other values.

Then all ä 0 [0, 1] are undominated.  I henceforth assume that the planner faces ambiguity.

4.2.2. The Expected Utility and the Maximin Criteria

There is no uniquely correct way to choose an undominated allocation.  This section briefly

discusses the choices made by a planner who uses the expected utility or the maximin criterion.  The

next section develops minimax-regret treatment choice.

A planner using the expected utility criterion places a subjective distribution ð on set S,

computes the subjective mean value of welfare under each treatment allocation, and chooses an

allocation that maximizes this subjective mean.  Thus, the planner solves the optimization problem

ð ð ð(11)       max     E (á) + [E (â) ! E (á)]ä,
          ä 0 [0, 1]

ð s ð swhere E (á) = Iá dð and E (â) = Iâ dð are the subjective means of á and â.  The decision assigns

ð ð ð ðeveryone to treatment b if E (â) > E (á) and everyone to treatment a if E (á) > E (â).  All allocations
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ð ðmaximize expected utility if E (â) = E (á).  Thus, the planner behaves as would one who knows that

the population means in (10) have the values in (11).

To determine the maximin allocation, one first computes the minimum welfare attained by

each allocation across all states of nature.  One then chooses an allocation that maximizes this

minimum welfare.  Thus, the criterion is

s s s(12)       max       min   á   +  (â  ! á )ä.
           ä 0 [0, 1]    s 0 S

L LThe solution has a simple form if (á , â ) is a feasible value of (á, â), as is so when the identification

L L L Lregion is rectangular.  Then the maximin allocation is ä = 0 if á  > â , ä = 1 if á  < â , and all ä 0 [0,

L L1] if á  = â .

4.2.3. The Minimax-Regret Criterion

By definition, the regret of allocation ä in state of nature s is the difference between the

maximum achievable welfare and the welfare achieved with this allocation.  The maximum welfare

s s s s s s sachievable in state s is max (á , â ).  Hence, ä has regret max (á , â ) ! [á  + (â  ! á )ä].  The

minimax-regret rule computes the maximum regret of each allocation over all states of nature and

chooses an allocation to minimize maximum regret.  Thus, the criterion is

s s s s s(13)       min      max    max (á , â ) ! [á  + (â  ! á )ä].
          ä 0 [0, 1]    s 0 S
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Let S(a) and S(b) be the subsets of S on which treatments a and b are superior.  That is, let

s s s s s 0 S(a) s sS(a) / {s 0 S: á  > â } and S(b) / {s 0 S: â  > á }.  Let M(a) / max  (á  ! â ) and M(b) / max

s 0 S(b) s s (â  ! á ) be maximum regret on S(a) and S(b) respectively.  Manski (2007, Complement 11A)

proves that the MR criterion always makes a fractional treatment allocation when both treatments

are undominated.  The result is

                               M(b)

MR(14)    ä    =   ————— .
                         M(a) + M(b)

The proof is short and instructive, so I reproduce it here.

Proof: The maximum regret of allocation ä on all of S is max [R(ä, a), R(ä, b)], where 

s s s s s(15a)     R(ä, a)  /   max  á  ! [(1 ! ä)á  + äâ ]  =   max  ä(á  ! â )  =  äM(a),
                               s 0 S(a)                                       s 0 S(a)

s s s s s(15b)     R(ä, b)  /   max  â  ! [(1 ! ä)á  + äâ ]  =   max  (1 ! ä)(â  ! á )  =  (1 ! ä)M(b),
                               s 0 S(b)                                       s 0 S(b)

are maximum regret on S(a) and S(b).  Both treatments are undominated, so R(1, a) = M(a)  > 0 and

R(0, b) = M(b) > 0. As ä increases from 0 to 1, R(@, a) increases linearly from 0 to M(a) and R(@, b)

decreases linearly from M(b) to 0.  Hence, the MR rule is the unique ä 0 (0, 1) such that R(ä, a) =

R(ä, b). This yields (14).  ~

The proof of (14) shows that the MR allocation balances the potential losses from the two
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types of error.  Recall that a Type A error occurs when treatment a is chosen but is actually inferior

to b, and a Type B error occurs when b is chosen but is inferior to a.  For any allocation ä 0 [0, 1],

the quantities R(ä, b) and R(ä, a) give the potential welfare losses from Type A and B errors

respectively.  As ä increases from 0 to 1, the former potential loss decreases from M(b) to 0 and the

latter increases from 0 to M(a).  The MR criterion chooses ä to minimize the maximum potential

loss, which occurs when R(ä, a) = R(ä, b).

MR MRWhen a planner uses allocation ä , maximum regret is ä M(A) = M(a)M(b)/[M(a) + M(b)].

It is interesting to compare this with the maximum regret that would result if the planner were only

able to choose one of the singleton allocations.  The solution would be ä = 0 if M(a) $ M(b) and ä

= 1 if M(a) # M(b).  Maximum regret would be min[M(a), M(b)].  Thus, permitting fractional

allocations can reduce maximum regret to as little as one-half the value achievable with singleton

allocations, this occurring when M(a) = M(b).

L U U LExpressions M(a) and M(b) simplify when (á , â ) and (á , â ) are feasible values of (á, â),

U L U Las is so when the identification region is rectangular.  Then M(a) = á  ! â  and M(b) = â  ! á .

Hence,

U L                                       â  ! á

MR(16)    ä    =   ————————— .

U L U L                          (á  ! â ) + (â  ! á )

Result (16) simplifies further if either á or â is fully known.  In particular, suppose that á is known.

L UThen á  = á  = á and (16) becomes
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U                       â  ! á

MR(17)    ä   =  ——— .

U L                       â  ! â
 

Full knowledge of á may be realistic if a is the status quo treatment and b is an innovation.

Suppose, for example, that treatment a has been the standard therapy for a disease and treatment b

is a proposed new therapy.  Then one may be able to observe the outcomes experienced when earlier

cohorts of patients were given treatment a, but no comparable data may be available for treatment

b.  Hence, the available empirical evidence may reveal á but not â.

The fractional character of the MR treatment allocation contrasts sharply with the generic

singleton nature of the expected-utility allocation.  It is revealing to consider the special case where

á is known.  Bayesians sometime suggest that when a real quantity is known only to lie within some

interval, a decision maker should assert a uniform distribution on the quantity and maximize

L Uexpected utility.  Suppose that a planner places the uniform distribution U(â , â ) on â and

L Umaximizes expected welfare.  The subjective mean for â is (â  + â )/2, so the planner sets ä = 0 if

L U L U MR U U L(â  + â )/2 < á and ä = 1 if (â  + â )/2 > á.   In contrast, a MR planner sets ä  = (â  ! á)/(â  ! â ).

I caution the reader that analysis of the minimax-regret criterion when there are more than

two feasible treatments is less transparent than with two treatments.  Stoye (2007) has studied a class

of planning problems with multiple qualitatively different treatments and has found that the MR

allocations are subtle to characterize.  They often are fractional, but he gives an example in which

there exists a unique singleton allocation.  Manski (2010b) shows that diversified treatment

allocations are dominated when the feasible set of treatments is convex and treatment response is

homogeneous, a common concave function transforming treatments and states of nature into



32

outcomes; see Section 5 below.

4.2.4. Illustration: Choosing Sentences for Convicted Juvenile Offenders

To illustrate planning using the expected utility, maximin, and minimax-regret criteria,

consider the problem of choosing sentences for a population of convicted offenders.  I apply findings

reported in Manski and Nagin (1998), who studied the sentencing and recidivism of male youth in

the state of Utah who were convicted of offenses before they reached age 16. 

In this illustration, the planner is the state of Utah and the population are males under age 16

who are convicted of an offence.  Treatment a is the status quo policy, this being a decentralized

system where judges have discretion to choose between residential confinement and a sentence that

does not involve confinement.  Treatment b is an innovation mandating confinement for all

convicted offenders.  I take the outcome of interest to be a binary measure of recidivism.

Specifically, y(t) = 1 if an offender who receives treatment t is not convicted of another crime in the

two-year period following sentencing, and y(t) = 0 if the offender is convicted of a subsequent crime.

Let u(t) = y(t).  Then á = P[y(a) = 1] and â = P[y(b) = 1].

Analyzing data on outcomes under the status quo policy, Manski and Nagin (1998) find that

á = 0.61. The data partially identify â.  In the absence of knowledge of how judges choose sentences

or how juveniles respond to their sentences, the data reveal only that â 0 [0.03, 0.92].  Thus, the

innovation may be much better or worse than the status quo.  Manski and Nagin (1998) argue that

this “worst-case” bound on â is germane to policy making because criminologists have found it

difficult to learn how sentencing affects recidivism.  Researchers have long debated the
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counterfactual outcomes that offenders would experience if they were to receive other sentences.

Consider policy choice when the state of Utah knows that á = 0.61 and â 0 [0.03, 0.92].  If

ðthe state maximizes expected utility, it fully adopts the innovation of mandatory confinement if E (â)

ð> 0.61 and leaves the status quo of judicial discretion in place if E (â) < 0.61.  If the state applies the

Lmaximin criterion, it leaves the status quo in place because â  = 0.03 < 0.61.

If the state applies the minimax-regret criterion, it applies (17).  Thus, it confines a randomly

U U Lchosen fraction (â  ! á)/(â  ! â ) = (0.92 ! 0.61)/(0.92 ! 0.03) = 0.35 of offenders, leaving judicial

discretion in place for the remaining fraction 0.65.  The maximum regret of the MR allocation is

(0.35)(0.61 ! 0.03) = 0.20.

4.3. Diversification and “Equal Treatment of Equals”

The analysis in Section 4.2 maintained the traditional consequentialist assumption of welfare

economics.  That is, policy choices matter only for the outcomes they yield.  In contrast,

deontological ethics supposes that actions may have intrinsic value, apart from their consequences.

 When considering fractional treatment allocations, a particularly salient deontological idea

is the normative principle calling for equal treatment of equals.  Fractional allocations are consistent

with this principle in the sense that observationally identical persons have equal probabilities of

receiving particular treatments.  They are inconsistent with the principle in the sense that

observationally identical persons do not actually receive the same treatment.  Thus, equal treatment

holds ex ante but not ex post.

A dramatic illustration of the difference between the ex ante and ex post senses of equal
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treatment occurs in this hypothetical problem of treatment choice considered in Manski (2007,

Section 11.7).

Choosing Treatments for X-Pox: Suppose that a new viral disease called x-pox is sweeping the

world.  Medical researchers have proposed two mutually exclusive treatments, t = a and t = b, which

a b treflect alternative hypotheses, say H  and H , about the nature of the virus.  If H  is correct, all

persons who receive treatment t survive and all others die.  It is known that one of the two

ahypotheses is correct, but it is not known which one; thus, there are two states of natures, s = H  and

bs = H .  Let welfare be the survival rate of the population.  If a fraction ä of the population receives

treatment b and the remaining 1 ! ä receives treatment a, the fraction who survive is (1 ! ä)@1[s =

a bH ] + ä@1[s = H ].

The singleton allocations ä = 0 and ä = 1 provide equal treatment in both the ex ante and ex

post senses.  These allocations also equalize realized outcomes—the entire population either survives

or dies.   A planner applying the expected utility criterion makes a singleton allocation, allocating

the entire population to the treatment with the higher subjective probability of success.

The maximin and minimax-regret allocations are both ä = ½.  Everyone is treated equally ex

ante, each person having a 50 percent chance of receiving each treatment, but not ex post.  Nor are

outcomes equalized—half the population lives and half dies.    ~

Democratic societies ordinarily adhere to the ex post sense of equal treatment.  However,

some important policies adhere to the ex ante sense of equal treatment but explicitly violate the ex

post sense.  American examples include random tax audits, drug testing and airport screening,
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random calls for jury service, and the Green Card and Vietnam draft lotteries.  These policies have

not been prompted by the desire to cope with ambiguity that motivates treatment diversification.  Yet

they do indicate some willingness of society to accept ex post unequal treatment.

Reduction of ambiguity is the explicit objective of randomized clinical trials in medicine and

other randomized social experiments.  Combining ex ante equal treatment with ex post unequal

treatment is precisely what makes randomized experiments useful in learning about treatment

response.  Modern medical ethics permits randomized trials only under conditions of clinical

equipoise; that is, when partial knowledge of treatment response prevents a determination that one

treatment is superior to another.  Clinical equipoise is essentially a synonym for ambiguity.

Manski (2009) considers planning with deontological welfare functions, which enable a

planner to formally express ethical objections to fractional treatment allocations for their violation

of ex post equal treatment of equals. I characterize concern with ex post equal treatment as a fixed

cost incurred when the planner chooses a fractional allocation.  Posing a welfare function that

generalizes (10) by incorporating this fixed cost, I show that the MR allocation remains the fraction

given in (14) when the fixed cost is small, but is singleton if the fixed cost is sufficiently large.  

4.4. Adaptive Diversification

I now consider a multi-period setting where, in each period, a planner must choose treatments

for the current cohort of a population.  The planner wants to maximize the welfare of each cohort.

The essential new feature of multi-period problems is that learning is possible, with

observation of the outcomes experienced by earlier cohorts informing treatment choice for later
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cohorts.  Diversification of treatment is advantageous for learning because it generates randomized

experiments yielding outcome data on both treatments.  Sampling variation is not an issue when

cohorts are large, so all fractional allocations yield the same information.  Hence, the choice among

fractional allocations may be based on other grounds.

I suggest use of the adaptive minimax-regret (AMR) criterion.  In each period, the AMR

criterion applies the static minimax-regret criterion, using the information available at the time.  The

result is a fractional allocation whenever both treatments are undominated.  The AMR criterion is

adaptive because successive cohorts may receive different allocations as knowledge of treatment

response accumulates over time.

Section 4.4.1 formalizes the AMR criterion.  Section 4.4.2 gives a numerical illustration

showing how a centralized health planning system could use the criterion to choose treatments for

a non-infectious disease.  Section 4.4.3 discusses how the AMR criterion differs from the current

practice of randomized experiments.

4.4.1. The Adaptive Minimax-Regret Criterion

To frame the multi-period planning problem we need to extend the concepts and notation

used earlier.  Let n = 0, 1, . . . . , N denote the periods in which treatment allocations must be chosen.

nLet P [y(@)] denote the distribution of treatment response across cohort n.  I assume that all cohorts

nare large and have the same distribution of treatment response.  Thus, P [y(@)] = P[y(@)] for all n,

where P[y(@)] is a time-invariant distribution.

The assumption of a time-invariant outcome distribution enables learning.  Observation of
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the outcomes experienced by earlier cohorts yields information about P[y(@)] that can inform

treatment choice for later cohorts.  Formally, learning occurs when observation of outcomes enables

the planner to shrink the set of feasible states of nature.

In each period, the set of feasible treatments is T = {a, b}.  The planner’s problem is to

nallocate each cohort between the two treatments.  A treatment allocation is a vector ä / (ä , n = 0,

n n. . . , N) that randomly assigns a fraction ä  of cohort n to treatment b and the remaining 1 ! ä  to

n ntreatment a.  The optimal allocation in period n is ä  = 1 if â $ á and ä  = 0 if â # á.  The planner

faces ambiguity in period n if he does not know whether á is larger than â.

n nLet S  index the feasible states of nature in period n.  The planner chooses an allocation ä

nN nN nNwith knowledge of (ä , nN < n) and (S , nN # n), but without knowledge of the information (S , nN

> n) that he will possess later on.  It is conceptually subtle and computationally daunting to approach

nchoice of ä  in a forward-looking manner, considering all logically possible future sequences of

ninformation sets and choices.  It is much simpler to proceed myopically, choosing ä  as if n is the

sole period of a static choice problem. 

The AMR criterion provides an appealing myopic decision rule.  The criterion in period n

is

s s n s n s(18)          min        max   max (á , â )  !  [(1 ! ä )á  + ä â ].

n n              ä  0 [0, 1]     s 0 S

n n s s nThe AMR allocation follows immediately from (14).  Let S (a) / {s 0 S : á  > â } and S (b) / {s 0

n s s n s 0 Sn(a) s s n s 0 Sn(b) s sS : â  > á }.  Let M (a) / max  (á  ! â ) and M (b) / max  (â  ! á ).  Then
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n                                 M (b)

nAMR(19)    ä   =  —————— .

n n                          M (a) + M (b)

The AMR criterion treats each cohort as well as possible, in the static minimax-regret sense.

It does not ask the members of one cohort to sacrifice its own welfare for the benefit of future

cohorts.  Nevertheless, this criterion is informationally beneficial to future cohorts because

diversification yields randomized experiments.

4.4.2. Application to Centralized Health Care Systems

Here is a numerical illustration concerning treatment of a life-threatening disease.  The

planner faces ambiguity because the outcome of interest unfolds over multiple periods following

receipt of treatment.  As empirical evidence accumulates, the AMR treatment allocation changes

accordingly.

In the illustration, a is a status quo treatment whose outcome distribution is known from

historical experience, and b is an innovation with initially unknown outcome distribution.  The

adaptive minimax-regret rule applies (17) to each successive cohort, using the knowledge of â

available at the time.  Thus, the AMR decision at each n is

AMR(n) Un(20)    ä   =  0                                            if â  < á,

Un Un Ln Ln Un                       =  (â  ! á)/(â  ! â )             if  â  # á # â ,

Ln                       =  1                                            if â  > á.
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Treating a Life-Threatening Disease

Consider treatment of a life-threatening non-infectious disease.  I take the outcome of interest

to be the number of years that a patient survives within a specified time horizon following treatment.

Let the horizon be five years and let y(t) denote the number of years that a patient lives during the

five years following receipt of treatment t.  Thus, y(t) has the time-additive form

                               K

j jk(21)         y (t)  =     3  y (t),
                             k = 1

jk jkwhere y (t) = 1 if patient j is alive k years after treatment, y (t) = 0 otherwise, and K = 5.

jIf patient j receives treatment b, outcome y (b) gradually becomes observable as time passes.

jAt the time of treatment, y (b) can take any of the values [0, 1, 2, 3, 4, 5].  A year later, one can

j jobserve whether j is still alive and hence can determine whether y (b) = 0 or y (b) $ 1.  And so on

until year five, when the outcome is fully observable.

Table 1 presents hypothetical data on annual death rates following treatment by the status quo

and the innovation.  The entries show that 20 (10) percent of the patients who receive the status quo

(innovation) die within the first year after treatment.  In each of the later years, the death rates are

5 and 2 percent respectively.  Overall, the mean numbers of years lived after treatment are á = 3.5

and â = 4.3.  The former value is known at the outset from historical experience.  The latter gradually

becomes observable.

[place Table 1 here]

Assume that the planner measures welfare by a patient’s length of life; thus, u(t) = y(t).  Also
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assume that the planner has no initial knowledge of â.  That is, he does not know whether the

innovation will be disastrous, with all patients dying in the first year following treatment, or entirely

L0 U0successful, with all patients living five years or more.  Then the initial bound on â is [â , â ] = [0,

05].  Hence, the initial AMR treatment allocation is ä  = 0.30.

In year 1 the planner observes that, of the patients in cohort 0 assigned to the innovation, 10

percent died in the first year following treatment.  This enables him to deduce that P[y(b) $ 1] =

L1 U10.90.  The planner uses this information to tighten the bound on â to [â , â ] = [0.90, 4.50].  It

1follows that ä  = 0.28.  In each subsequent year the planner observes another annual death rate,

2tightens the bound on â, and computes the treatment allocation accordingly.  The result is that ä  =

3 40.35,  ä  = 0.50, and ä  = 0.98.  In year 5 he knows that the innovation is better than the status quo,

5and so sets ä  = 1.

4.4.3. The AMR Criterion and the Practice of Randomized Experiments

The above illustration exemplifies a host of settings in which a planner must choose between

a well-understood status quo treatment and an innovation whose properties are only partially known.

When facing situations of this kind, it has been common to perform randomized experiments to learn

about the innovation.  The fractional allocations produced by the AMR criterion are randomized

experiments, so it is natural to ask how application of the AMR criterion differs from the current

practice randomized experiments.  There are many major differences.  I describe three here.
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Fraction of the Population Receiving the Innovation

nAMRThe AMR treatment allocation ä  can take any value in the interval [0, 1].  In contrast, the

sample receiving the innovation in current experiments is typically a very small fraction of the

relevant population, with sample size determined by conventional calculations of statistical power.

For example, in trials conducted to obtain U. S. Food and Drug Administration (FDA) approval of

new drugs, the sample receiving the innovation typically comprises two to three thousand persons,

whereas the relevant patient population may contain hundreds of thousands or millions of persons.

Thus, the value of ä in a drug trial is generally less than 0.01 and often less than 0.001.

Group Subject to Randomization

Under the AMR criterion as illustrated above, the persons receiving the innovation are

randomly drawn from the full patient population.  In contrast, present clinical trials randomly draw

subjects from pools of persons who volunteer to participate.  Hence, a trial at most reveals the

distribution of treatment response within the sub-population of volunteers, not within the full patient

population.

Looking beyond medical trials, randomized experiments often study populations whose

composition differs substantially from the population to be treated.  Indeed, much research

downplays the importance of correspondence between these populations.  Donald Campbell argued

that studies of treatment effects should be judged primarily by their internal validity and only

secondarily by their external validity (e.g., Campbell and Stanley, 1963; Campbell, 1984).  By

internal validity, Campbell meant the credibility of findings within the study population, whatever

it may be.  By external validity, he meant the credibility of extrapolating findings from the study
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population to another population of interest.

Campbell’s assertion has been used to argue for the universal primacy of randomized

experiments over non-experimental data, whatever the study population may be.  The reason given

is that properly executed experiments have high internal validity.  However, from the perspective

of policy choice, it makes no sense to value one type of validity above the other. What matters is the

informativeness of a study for policy making in a population of interest.

From the perspective of treatment choice, the nature of the study population is immaterial

only if it is known that treatment response is homogeneous.  Then planners can be confident that

research findings can be extrapolated to the populations they must treat.  In human populations,

however, homogeneity of treatment response may be the exception rather than the rule.  Whether the

context be educational or medical or criminal, it is reasonable to think that persons vary in their

response to treatment.  To the degree that treatment response is heterogeneous, a planner must take

care when extrapolating research findings from a study population to a treatment population, as

optimal treatments in the two may differ.

Measurement of Outcomes

Under the AMR criterion as illustrated above, one observes the health outcomes of real

interest as they unfold over time and one uses these data to inform subsequent treatment decisions.

In contrast, the trials performed to obtain FDA approval of new drugs typically have durations of

only two to three years.  A three-year trial on the disease described in Table 1would only reveal that

â 0 [2.64, 4.36].

Attempting to learn from trials of short duration, medical researchers often measure surrogate



43

outcomes rather than outcomes of real interest.  For example, treatments for heart disease may be

evaluated using data on patient cholesterol levels and blood pressure rather than heart attacks and

life span.  Medical researchers have cautioned that extrapolation from surrogate outcomes to

outcomes of interest can be difficult; see Fleming and Demets (1996) and Psaty et al. (1999).

Nevertheless, the practice has persisted.

Extrapolation from surrogate outcomes is similarly problematic in non-medical contexts.  For

example, preschool interventions are often evaluated using test performance in the early grades of

school.  However, the outcomes of real interest measure the long-term development of children into

adults.

5. Treatment with a Convex Choice Set and a Common Concave Outcome Function

The analysis summarized in Section 4 provides a formal foundation for diversified treatment

choice when the optimal treatment is not known.  Nevertheless, I should caution the reader that

diversified treatment is not always desirable.  I have previously observed that fixed treatment costs

may make singleton allocations preferable.  In this section, I call attention to a class of problems of

policy choice under ambiguity where all diversified allocations are dominated.

Sections 3 and 4 considered settings where each member of the population receives one of

two treatments: vaccination or no vaccination in Section 3, treatment a or b in Section 4.  Manski

(2010b) studies a one-period planning problem with a different structure.  Now the feasible

treatments are a convex set and treatment response is given by a common concave function that maps
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 This finding presumes a one-period planning problem.  Diversification might be appealing4

in multi-period extensions of this problem, where learning becomes possible.

the treatment and the state of nature into an outcome.  The planner should not diversify treatment

in this setting.  Any fractional allocation is dominated by one that gives all members of the

population the mean treatment.

The finding rests on a simple application of Jensen’s inequality.  Again let S list the feasible

states of nature.  Let X be the convex set of feasible treatments.  Let f(A, A): X × S 6 R be a known

function that maps treatments and states into the real line.  Suppose that, for each s 0 S, f(A, s) is

concave on X.  Whereas I earlier permitted treatment response to vary across the population, the

present analysis assumes that treatment response is homogenous.  This is manifest in the notation,

as f(A, A) is the same for all members of the population.

jSuppose that a planner can assign each agent any feasible treatment.  Let (x , j 0 J) be a

x jtreatment allocation with mean ì  / Ix dP(j).  As earlier, let the welfare of an allocation add up

j joutcomes across the population.  Thus, the welfare of allocation (x , j 0 J) in state s is If(x , s)dP(j).

Jensen’s inequality gives

x j(22)    f(ì , s)  $  If(x , s)dP(j),    all s 0 S.

xResult (22) shows that, in each state, welfare when the planner assigns every agent treatment ì  is

jat least as large as welfare with allocation (x , j 0 J).  Thus, diversified treatment of the population

is dominated by assigning the associated mean treatment to all persons.4

This finding implies that the planner should restrict attention to policies that treat the
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population uniformly, but it does not determine what uniform treatment the planner should choose.

The various decision criteria discussed in Section 2 may be used to choose a specific treatment.

Application to Medical Treatment

Medical treatment with partial knowledge of treatment response illustrates when

diversification is and is not a reasonable strategy.  Consider first an organ disease with two

alternative treatments.  One is surgery to repair the organ and the other is replacement of the organ

with a transplant.  Convex combinations of these treatments are not feasible—one can only repair

or replace.  In a setting of this sort, diversification  warrants consideration when it is not known

which treatment is better.  Some fraction of patients would have the organ repaired and the

remaining fraction would receive transplants.  The minimax-regret criterion provides a coherent

method to choose the fractions.

Now consider exercise as a treatment intended to increase life span.  Here convex

combinations of treatments are feasible—one can exercise in low, high, or intermediate intensities.

Suppose that the objective function is concave and homogeneous across the relevant patient

population, with diminishing marginal returns to higher intensity of exercise.  Then a planner should

not vary intensity across patients.  Any diversified treatment strategy is dominated by one in which

all patients exercise at the mean of the diversified intensities.



46

6. Conclusion

Optimal policy choice under ambiguity is not achievable, but reasonable choices based on

coherent decision-theoretic principles are achievable.  Planners should not seek to hide ambiguity

behind untenable assumptions.  They should face up to ambiguity when decisions must be made and

seek to reduce it over time.  This paper has described some principles for policy choice under

ambiguity and has applied them to various settings.

An important general lesson is to first study dominance in order to eliminate clearly bad

policies, and then study particular decision criteria to choose an undominated policy.  Although all

policies were undominated in the setting of Section 4, substantial subsets of policies were found to

be dominated in the settings of Sections 3 and 5.  Thus, study of dominance can pay off.

Another important general lesson is that there is no objectively correct way to choose an

undominated policy.  A planner might maximize subjective expected welfare, maximize minimum

welfare, minimize maximum regret, or use another decision criterion.  Research of the type described

in this article cannot prescribe a “best” decision criterion.  However, it can inform policy choice by

characterizing the properties of various criteria in specific settings.
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Table 1: Treating a Life-Threatening Disease

cohort

or year

(n or k)

death rate in k  yearth

after treatment

bound on â

for

cohort n

AMR

allocation

for cohort

n

minimax

value of

regret for

cohort n

mean life

span for

cohort n

Status Quo Innovatio

n

0 [0, 5] 0.30 1.05 3.74

1 0.20 0.10 [0.90, 4.50] 0.28 0.72 3.72

2 0.05 0.02 [1.78, 4.42] 0.35 0.60 3.78

3 0.05 0.02 [2.64, 4.36] 0.50 0.43 3.90

4 0.05 0.02 [3.48, 4.32] 0.98 0.02 4.28

5 0.05 0.02 [4.30, 4.30] 1 0 4.30


