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Outline

Outline:

Notation

Treatment effects,
essential heterogeneity in treatment effects.

Evaluation Problem: Selection and sorting.

Instrumental Variables under essential heterogeneity

Selection models with essential heterogeneity.

Estimation, feasibility, and practicality
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Counterfactual Notation

Notation:

Di dummy variable for treatment for individual i ,
Di = 1 if treated, = 0 otherwise.

Y1i potential outcome for individual i if treated,
what would be observed if treated.

Y0i potential outcome for individual i if not treated,
what would be observed if not treated.

Observed outcome for individual i :

Yi = Y0i + Di(Y1i − Y0i) =

{
Y1i if Di = 1,

Y0i if Di = 0.
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Counterfactual Notation (cont’d)

Define:

Xi controls, called confounders within biostatistics,
observed variables that directly affect Y0i ,Y1i .

Zi , instruments, variables that affect Di but do not
directly affect Y0i ,Y1i .

Potential treatments

{Di(z) : z ∈ Z},

treatment choice that i would have chosen if randomly
assigned Zi = z , where Z is set of possible instrument
values.
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Treatment Effects and Heterogeneity

Let ∆i = Y1i − Y0i , treatment effect for individual i .

Central issue: how does ∆i vary with i?

Homogenous treatment effect:
Treatment effects ∆i constant across individuals
(conditional on Xi)

Heterogeneous treatment effects:
Treatment effects ∆i vary across individuals
(even conditional on Xi)

Allowing for heterogeneous treatment effects fundamentally
changes the evaluation problem if there is “Essential
Heterogeneity” (Heckman, Vytlacil and Urzua, 2006).
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Treatment Effects and Heterogeneity

Essential Heterogeneity
(Heckman, Vytlacil and Urzua, 2006):

Y1i − Y0i 6⊥⊥ Di |Xi .

Agents select into treatment based, in part, on their own
idiosyncratic effect.

Allowing for Essential Heterogeneity fundamentally changes
the evaluation problem, raising questions as to what is the
parameter of interest, complicating identification analysis, and
changing the interpretation of results.
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Evaluation Problem with Homogeneous Treatment Effect: Selection Bias

Evaluation Problem (Homogeneous Treatment Effects)

Suppose ∆ a constant.

Parameter of interest: ∆ = Y1i − Y0i .

Classical evaluation problem: Selection Bias

∆i = ∆⇒ Yi = Y0i + Di∆

⇒ E (Yi |Di = 1)− E (Yi |Di = 0)

= ∆ + E (Y0i |Di = 1)− E (Y0i |Di = 0)︸ ︷︷ ︸ .
Selection Bias

Same analysis conditional on Xi if treatment effect constant
conditional on Xi .
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Evaluation Problem (Homogeneous Treatment Effect): Selection Bias

E (Y0|D = 1)− E (Y0|D = 0) is selection bias:

Selection on the base state

if treated had not received treatment, would they have
similar outcomes as the non treated?

Sometimes called “Ability Bias” in labor economics.

Common worry: omitted variable (e.g., ability), omitted
variable correlated with selection into treatment.

Common solution: instrumental variables.
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Evaluation Problem with Heterogeneous Treatment Effects: Parameters

Allow Essential Heterogeneity.
∆i random, possibly correlated with treatment choice.

What is parameter of interest?

Most often, consider average treatment parameters:

Average Treatment Effect, ATE = E (Y1i − Y0i),

Treatment on the Treated, TT= E (Y1i − Y0i |Di = 1),

Treatment on the Untreated, TUT= E (Y1i −Y0i |Di = 0).

Can also consider IV-defined parameters (e.g., LATE, Imbens
and Angrist 1994), Policy Relevant Treatment Effect
(Heckman and Vytlacil, 2001), Person Centered Treatment
Effects (Basu, 2013), etc
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Evaluation Problem with Heterogeneous Treatment Effects: Parameters
(Cont’d)

Average treatment parameters:

Average Treatment Effect, ATE = E (Y1i − Y0i).

Treatment on the Treated, TT= E (Y1i − Y0i |Di = 1).

Treatment on the Untreated, TUT= E (Y1i −Y0i |Di = 0).

If treatment effects are heterogeneous without Essential
Heterogeneity (Y1i − Y0i ⊥⊥ Di |Xi), then all of these mean
parameters coincide (conditional on X ).
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Evaluation Problem with Heterogeneous Treatment Effect:
Selection Bias and Sorting Gain

Allow Heterogeneous Treatment effect.

Y = Y0 + D(Y1 − Y0).

E (Y |D = 1)− E (Y |D = 0)

= E (Y1 − Y0|D = 1)︸ ︷︷ ︸+E (Y0|D = 1)− E (Y0|D = 0)︸ ︷︷ ︸
TT Selection Bias

= E (Y1 − Y0) +

{
E (Y1 − Y0|D = 1)
−E (Y1 − Y0)

}
+

{
E (Y0|D = 1)
−E (Y0|D = 0)

}
= ATE + Sorting Gain + Selection Bias
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Evaluation Problem with Heterogeneous Treatment Effect:
Selection Bias and Sorting Gain (cont’d)

With heterogeneous effects, bias depends on parameter of
interest.

For TT, bias is selection bias, as before.

For ATE, additional bias term: sorting gain

selection on the gain, benefit to those who sort into
treatment versus average person.
Expect nonzero under essential heterogeneity
Positive for Roy model.

If effects are heterogeneous but without essential
heterogeneity, than analysis is the same as for
homogeneous case, sorting gain is zero.

Classical IV results do not hold
12 / 59



Notation Evaluation Problem IV Selection Models MTE Identification Estimation, Feasibility, Practicality

Evaluation Problem with Heterogeneous Treatment Effect:
Selection Bias and Sorting Gain (cont’d)

When considering alternative methods to evaluate effects of a
treatment, important to consider:

1 Essential heterogeneity?

2 What is parameter of interest?

3 What is bias of method for particular parameter?
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Potential “Solution”: Instrumental Variables

Suppose for instrument Z :
1 Cov(D,Z ) 6= 0 (Instrument Relevance),
2 Z ⊥⊥ Y0,Y1 (Instrument Exogeneity).

Probability limit of IV:

plimIV =
Cov(Y ,Z )

Cov(D,Z )
.

Will plimIV correspond to an object of interest?
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Potential “Solution”: Instrumental Variables

Y = Y0 + D(Y1 − Y0)

= E [Y0] + DE [Y1 − Y0] + {ε + ηD},

where
ε = Y0 − E [Y0]

η = (Y1 − Y0)− E (Y1 − Y0).

Need Z to be uncorrelated with [ε + ηD] to use IV
identify E (Y1 − Y0).
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Potential “Solution”: Instrumental Variables

ε = [Y0 − E (Y0)]

η = (Y1 − Y0)− E (Y1 − Y0).

Need Z to be uncorrelated with [ε + ηD] to use IV
identify E (Y1 − Y0).

Z ⊥⊥ Y0,Y1 ⇒
Cov(Z , ε) = 0
Cov(Z , η) = 0,

; Cov(Z , ηD) = 0.
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IV when ∆ is a constant

Suppose ∆ is a constant ⇒ η = 0.

Cov(Z , ε + ηD) = Cov(Z , ε) = 0 and thus

plim IV =
Cov(Z ,Y )

Cov(Z ,D)
= E (Y1 − Y0).

If other instruments exist, each identifies the same
parameter.

No restriction is needed on selection process.
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Suppose ∆ Varies Across Individuals ⇒ η Random.

Y = E (Y0) + DE (Y1 − Y0) + {ε + ηD}
where ε = [Y0 − E (Y0)], η = (Y1 − Y0)− E (Y1 − Y0).

E [ηD|Z ] = E (η | D = 1,Z ) Pr(D = 1 | Z ).

Need Z to be uncorrelated with [ε + ηD] to use IV
identify E (Y1 − Y0).

This condition will be satisfied if policy adoption is made
without knowledge of η = (Y1 − Y0)− E (Y1 − Y0).

If decisions about D are made with partial or full
knowledge of η, expect E (η | D = 1,Z ) to depend on Z
and thus for IV not to identify E (Y1 − Y0).
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Without more conditions, IV does not identify any ATE or
any other interpretable parameter under essential
heterogeneity.

With additional conditions, IV does identify an
interpretable parameter: Local Average Treatment Effect
(LATE; Imbens and Angrist, 1994).
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Imbens Angrist conditions (1994)

IV-1 (Independence)

Z ⊥⊥
(
Y1,Y0, {D (z)}z∈Z

)
.

IV-2 (Rank)

Pr(D = 1 | Z ) depends on Z.

IV-3 (Monotonicity)

For all z , z ′ ∈ Z, either Di (z) ≥ Di (z ′) for all i ,
or Di (z) ≤ Di (z ′) for all i .
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Vytlacil (2002) Equivalence

Let 1[·] denote the logical indicator function.

Vytlacil (2002) shows Imbens-Angrist conditions are equivalent
to the nonparametric selection model:

SELECTION-1 (Selection Model)

Di = 1[µ(Zi) ≥ Ui ], Zi ⊥⊥ (Y0i ,Y1i ,Ui), and µ(·) is a
nontrivial function of Zi .
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Imbens Angrist (1994)

For Z = 0, 1, Imbens and Angrist show that these conditions
imply that

plimIV =
E (Y | Z = 1)− E (Y | Z = 0)

Pr(D = 1 | Z = 1)− Pr(D = 1 | Z = 0)

= E (Y1 − Y0 | D (1) = 1,D (0) = 0)

≡ LATE

The mean gain to those induced to switch from into
treatment by a change in Z from 0 to 1.

Not always of a priori interest.

More complicated expression if Z non-binary.
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Imbens Angrist

In general, LATE 6= E (Y1 − Y0), E (Y1 − Y0 | D = 1), or
any other parameter of a priori interest.

Different instruments define different parameters.

Having a wealth of different strong instruments does not
improve the precision of the estimate of any particular
parameter.
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Alternative Monotonicity Restrictions

Classical IV imposes strong homogeneity assumption on
outcome equation but no structure on selection equation.
Does not allow for essential heterogeneity.

In contrast, LATE analysis imposes no structure on
outcome equation but imposes monotonicity on selection
equation. Does allow for essential heterogeneity.

Possible to test for presence of essential heterogeneity
(Heckman, Shmierer, Urzua, 2010)

Monotonicity assumption on selection equation is testable
(Kitagawa 2008, and Machado, Shaikh and Vytlacil,
2013)
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Alternative Monotonicity Restrictions

LATE analysis imposes no structure on outcome equation but
imposes monotonicity on selection equation.

Alternatively, can:

Impose monotonicity symmetrically on outcome and
selection equations: Identify sign of average effect, can
bound average effect. Restriction is testable.
(Bhattacharya, Shaikh and Vytlacil, 2012; Shaikh and
Vytlacil, 2011; Machado, Shaikh and Vytlacil, 2013)

Impose monotonicity on outcome equation instead of
selection equation: Sign of average effect not necessarily
identified; Can bound average effect; Some strange
implications – passible to have large positive IV imply a
negative average treatment effect. Restriction is testable.
(Machado, Shaikh and Vytlacil, 2013).

25 / 59



Notation Evaluation Problem IV Selection Models MTE Identification Estimation, Feasibility, Practicality

Selection Models

Heckman, Vytlacil and co-authors

Impose Nonparametric Selection Model

By Vytlacil (2002), is equivalent to Imbens and Angrist
(1994) assumptions

Goals:

Unify literature with a common set of underlying
parameters interpretable across studies.

To understand how to connect the results of various
disparate IV estimands within a unified framework.

Consider strategies other than linear IV.
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Threshold Crossing Model for D

Selection Model:

D = 1 [µD(Z )− V > 0]

with Z ⊥⊥ V .

µD (Z )− V can be interpreted as a net utility for a
person with characteristics (Z ,V ), where V is unobserved
by the analyst.

Vytlacil (2002) shows that this model is equivalent to the
independence and monotonicity restrictions of Imbens and
Angrist.

Wider class of latent index models will have a
representation in this form (Vytlacil, 2006).
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Threshold Crossing Model for D: Independence, Propensity Score

We define P(z) as the propensity score:

P(z) ≡ Pr(D = 1 | Z = z) = Pr(µD(z) > V ) = FV (µ(z))

where FV is the distribution of V .

As normalization, can rewrite model as

D = 1 [µD (Z ) ≥ V ]

= 1 [FV (µD (Z )) ≥ FV (V )]

= 1 [P (Z ) ≥ UD ]

with UD ≡ FV (V ) ∼ Unif[0, 1]
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Marginal Treatment Effect: Key, unifying parameter,

∆MTE (uD) = E (Y1 − Y0 | UD = uD).

MTE is average effect at a given unobserved desire to
participate in treatment.

MTE and the local average treatment effect (LATE)
parameter are closely related.
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Under our assumptions, all standard treatment
parameters are weighted averages of MTE with weights
that can be estimated.

Parameterj =

∫
∆MTE (uD)ωj(uD)duD
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Table 1A: treatment effects and estimands as weighted averages of the
marginal treatment effect

ATE= E (Y1 − Y0) =
∫ 1

0
∆MTE (u) ωATE (u) du

TT= E (Y1 − Y0 | D = 1) =
∫ 1

0
∆MTE (u) ωTT (u) du

TUT= E (Y1 − Y0 | D = 0) =
∫ 1

0
∆MTE (u) ωTUT (u) du
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Table1B: weights

ωATE(u) = 1

ωTT(u) =
1− FP(u)

E (P)

ωTUT (u) =
FP(u)

E ((1− P))
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Figure 1: weights for the marginal treatment effect for different parameters
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Other parameters that can be represented as weighted average
of MTE include:

Probability limit of IV

LATE

Policy Relevant Treatment Effect
(Heckman and Vytlacil, 2001)

Marginal Policy Relevant Treatment Effect,
Average Effect of Treatment at the Margin
(Carneiro, Heckman and Vytlacil, 2010, 2011).

Person Centered Treatment Effects (Basu, 2013).
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Example: Effect of Year of College on Wages (Parametric)

MTE for Effect of Year of College on Wages
2767carneiro et al.: estimating marginal returns to educationVOL. 101 NO. 6

U​S​). Individuals choose the schooling sector in which they have comparative advan-
tage. The magnitude of the heterogeneity in returns on which agents select is sub-
stantial: returns can vary from −15.6 percent (for high ​U​ S​ persons, who would lose 
from attending college) to 28.8 percent per year of college (for low ​U​ S​ persons).16 
The magnitude of total heterogeneity is likely to be even higher since the MTE is 
the average gain at that quantile of desire to attend college. In general, there will be 
a distribution of returns centered at each value of the MTE. Furthermore, once we 
account for variation in X and its impact on returns through X(​δ​1​ − ​δ​0​), we observe 
returns as low as −31.56 percent and as high as 51.02 percent.

Using the weights presented in online Appendix Table A-1B, we can construct 
the standard treatment parameters from the MTE. We present the results in the 
first column of Table 5 (standard errors are bootstrapped). These include marginal 
returns to the three different policies considered in Table 1 (MPRTE), which are all 

16 One unattractive feature of the normal model is that (for our estimates of ​σ​1V​ and ​σ​0V​) MTE(x, 0) = + ∞ and 
MTE(x, 1) = −∞. In order to get finite values at the extremes of the normal MTE, we restrict the support of ​U​ S​ to 
be between 0.0001 and 0.9999.
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Figure 1. MTE Estimated from a Normal Selection Model

Notes: To estimate the function plotted here, we estimate a parametric normal selection model by maximum likeli-
hood. The figure is computed using the following formula: 

 	  ΔMTE (x, uS)  =  μ1 (x)  −  μ0 (x)  −  (σ1V  −  σ0V) Φ−1 (uS),

where ​σ​1V​ and ​σ​0V​ are the covariances between the unobservables of the college and high school equation and the 
unobservable in the selection equation; and X includes experience, current average earnings in the county of resi-
dence, current average unemployment in the state of residence, AFQT, mother’s education, number of siblings, 
urban residence at 14, permanent local earnings in the county of residence at 17, permanent unemployment in the 
state of residence at 17, and cohort dummies. We plot 90 percent confidence bands.

Source: Carneiro, Heckman and Vytlacil (2011)
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Example: Effect of Year of College on Wages (Semi-Parametric)

MTE for Effect of Year of College on Wages
2771carneiro et al.: estimating marginal returns to educationVOL. 101 NO. 6

mean values in the sample. As above, we annualize the MTE. Our estimates show 
that, in agreement with the normal model, E(​U​ 1​ − ​U​ 0​ | ​U​ S​ = ​u​S​) is declining in ​u​S​, i.e., 
students with high values of ​U​ S​ have lower returns than those with low values of ​U​ S​.

Even though the semiparametric estimate of the MTE has larger standard errors 
than the estimate based on the normal model, we still reject the hypothesis that its 
slope is zero. We have already discussed the rejection of the hypothesis that MTE is 
constant in ​u​S​, based on the test results reported in Table 4, panel A. But we can also 
directly test whether the semiparametric MTE is constant in ​u​S​ or not. We evaluate 
the MTE at 26 points, equally spaced between 0 and 1 (with intervals of 0.04). We 
construct pairs of nonoverlapping adjacent intervals (0–0.04, 0.08–0.12, 0.16–0.20, 
0.24–0.28, …), and we take the mean of the MTE for each pair. These are LATEs 
defined over different sections of the MTE. We compare adjacent LATEs. Table 4, 
panel B, reports the outcome of these comparisons. For example, the first column 
reports that

 	  E (​Y​1​  − ​ Y​ 0​ | X  = ​ _ x ​, 0  ≤ ​ U​ S​  ≤  0.04) 

 	  −  E (​Y​1​  − ​ Y​0​ | X  = ​ _ x ​, 0.08  ≤ ​ U​ S​  ≤  0.12)  =  0.0689.
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Figure 4. E(​Y​ 1​ − ​Y​ 0​ | X, ​U​ S​) with 90 Percent Confidence Interval— 
Locally Quadratic Regression Estimates

Notes: To estimate the function plotted here, we first use a partially linear regression of log wages on polynomials 
in X, interactions of polynomials in X and P, and K(P), a locally quadratic function of P (where P is the predicted 
probability of attending college), with a bandwidth of 0.32; X includes experience, current average earnings in the 
county of residence, current average unemployment in the state of residence, AFQT, mother’s education, number of 
siblings, urban residence at 14, permanent local earnings in the county of residence at 17, permanent unemployment 
in the state of residence at 17, and cohort dummies. The figure is generated by evaluating by the derivative of (9) 
at the average value of X. Ninety percent standard error bands are obtained using the bootstrap (250 replications).

Source: Carneiro, Heckman and Vytlacil (2011)
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Example: Effect of Year of College on Wages

Effect of Year of College on Wages

2768 THE AMERICAN ECONOMIC REVIEW october 2011

below the return to the average student (T T = E(β | S = 1)), the average person 
(ATE = E(β)), and the IV estimate. But it is not clear if these estimates are reliable, 
given the strong normality assumption used to generate them. We next corroborate 
these estimates of marginal returns using a more robust semiparametric approach.

C. Estimating the MTE and Marginal Policy Effects  
Using Local Instrumental Variables

An alternative and more robust approach for estimating the MTE estimates 
E(Y | X, P(Z) = p) semiparametrically and then computes its derivative with respect 
to p, as shown in the analysis of equations (5) and (6). If all we are willing to assume 
is that (​U​ 0​, ​U​ 1​, V ) is independent of Z given X, then it is only possible to estimate the 
MTE over the support of P conditional on X. Figure 2 plots f (P | X), the density of P 
given X (P is estimated by a logit). Since X is multidimensional, we use an index of 
X (X[​δ​1​ − ​δ​0​]). It is striking how small the support of P is for each value of the X 
index. It is not possible to estimate MTE over the full unit interval, and as a conse-
quence, it is not possible to estimate conventional treatment parameters such as the 
average treatment effect (E(β)) or the effect of treatment on the treated (E(β | S = 1)).  
It is still possible, however, to estimate MPRTE, since this parameter only puts posi-
tive weight over sections of the MTE that are identified within the support of f (P | X).

Empirically, it is very difficult to apply the procedure described in Section I while 
conditioning on X nonparametrically. We first proceed by invoking the stronger 
assumption that (X, Z) is independent of (​U​ 0​, ​U​ 1​, ​U​ S​). We relax it below. Under this 

Table 5—Returns to a Year of College

Model Normal Semiparametric

ATE = E(β) 0.0670 Not identified
(0.0378)

TT = E(β | S = 1) 0.1433 Not identified
(0.0346)

TUT = E(β | S = 0) −0.0066 Not identified
(0.0707)

MPRTE
Policy perturbation Metric
​Z​ α​ k

 ​ = ​Z ​k​ + α | Z γ − V | < e 0.0662 0.0802
(0.0373) (0.0424)

​P​ α​ = P + α  | P − U | < e 0.0637 0.0865
(0.0379) (0.0455)

​P​ α​ = (1 + α)P  | ​ P _ 
U

 ​ − 1 | < e 0.0363 0.0148
(0.0569) (0.0589)

Linear IV (Using P(Z) as the instrument) 0.0951
(0.0386)

OLS 0.0836
(0.0068)

Notes: This table presents estimates of various returns to college, for the semiparametric and 
the normal selection models: average treatment effect (ATE), treatment on the treated (TT), 
treatment on the untreated (TUT), and different versions of the marginal policy relevant treat-
ment effect (MPRTE). The linear IV estimate uses P as the instrument. Standard errors are 
bootstrapped (250 replications). See online Appendix Table A-1 for the exact definitions of 
the weights. See Table 1 for the weights for MPRTE. For more discussion of MPRTE, see 
Carneiro, Heckman, and Vytlacil (2010).

Source: Carneiro, Heckman and Vytlacil (2011)
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Example: MTE for Effect of Vocational Rehabilitation on Employment

MTE for Effect of Vocational Rehabilitation on Employment

	
  

Source: Aakvik, Heckman and Vytlacil (2005)
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Example: Effect of Vocational Rehabilitation on Employment

7.5. Cream-skimming: the relationship between selection into the program and

outcomes

A central question in the analysis of a program like VR is whether those who
benefit the most from it are those most likely to participate in it. We have already
noted that ATE is greater than TT ; i.e., that randomly selected persons benefit more
from the program than those who participate in it. This suggests that the
combinations of UD and Z values that promote program participation are perversely
associated with the observed and unobserved factors associated with gains from the
program.
In order to determine the extent of cream-skimming on both observables and

unobservables, it is necessary to relate D (as defined by the various means and
distributional parameter analogues) to ZbD and UD: We have estimated relation-
ships among D and (Xb1;Xb0;U1;U0Þ; however. So the problem is how to go from
the relationships we have estimated to determine the relationships between gains and
ZbD and UD:
Given the factor structure model, we can easily determine how variation in UD

affects U1 and U0 (see Eq. (12)). By virtue of independence assumption (iii), the
factor relationship does not depend on values of ZbD; Xb1 and Xb0: We have used
this relationship in computing Fig. 1 and in inferring that selection into the program

ARTICLE IN PRESS

Table 5

Mean and distributional treatment parameters

ATE Distributional version of ATE:

EðDÞ ¼ �0:014 Pr½D ¼ 1� ¼ 0:225
ðstandard error ¼ 0:08Þ Pr½D ¼ 0� ¼ 0:532

Pr½D ¼ �1� ¼ 0:240

TT Distributional version of TT :

EðD j D ¼ 1Þ ¼ �0:110 Pr½D ¼ 1 j D ¼ 1� ¼ 0:178
ðstandard error ¼ 0:09Þ Pr½D ¼ 0 j D ¼ 1� ¼ 0:534

Pr½D ¼ �1 j D ¼ 1� ¼ 0:288

MTE with UD ¼ 2 Distributional version of MTE with UD ¼ 2:

EðD j UD ¼ 2Þ ¼ 0:224 Pr½D ¼ 1 j UD ¼ 2� ¼ 0:350
ðstandard error ¼ 0:17Þ Pr½D ¼ 0 j UD ¼ 2� ¼ 0:524

Pr½D ¼ �1 j UD ¼ 2� ¼ 0:126

MTE with UD ¼ 0 Distributional version of MTE with UD ¼ 0:

EðD j UD ¼ 0Þ ¼ �0:014 Pr½D ¼ 1 j UD ¼ 0� ¼ 0:219
ðstandard error ¼ 0:07Þ Pr½D ¼ 0 j UD ¼ 0� ¼ 0:549

Pr½D ¼ �1 j UD ¼ 0� ¼ 0:233

MTE with UD ¼ �2 Distributional version of MTE with UD ¼ �2:
EðD j UD ¼ �2Þ ¼ �0:255 Pr½D ¼ 1 j UD ¼ �2� ¼ 0:119
ðstandard error ¼ 0:16Þ Pr½D ¼ 0 j UD ¼ �2� ¼ 0:508

Pr½D ¼ �1 j UD ¼ �2� ¼ 0:373

A. Aakvik et al. / Journal of Econometrics 125 (2005) 15–5140

Source: Aakvik, Heckman and Vytlacil (2005)
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Notation Evaluation Problem IV Selection Models MTE Identification Estimation, Feasibility, Practicality

Identification of the MTE

Different parameters can be seen as different weighted
averages of MTE, IV is a weighted average of MTE.

If can identify MTE, can:

1 Integrate MTE to obtain other parameters of interest

2 Understand connection between selection into treatment
and individual effects.

How to identify MTE?
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Identification of the MTE (cont’d)

Heckman-Vytlacil show that LIV (Local Instrumental
Variables) identifies MTE

∂

∂p
E (Y | P(Z ) = p)︸ ︷︷ ︸

LIV

= E (Y1 − Y0|UD = p)︸ ︷︷ ︸
MTE

. (6.1)

Thus ∆MTE (u) identified by LIV for u ∈ Supp(P(Z )).

The greater the variation in P(Z ), the greater the range
over which MTE is identified.
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Using MTE for Identification of Treatment Effects

Treatment Parameter (j) =
∫ 1

0
∆MTE (u) ωj (u) du,

Identification using this relationship requires identification
of ∆MTE (u) for u such that ωj (u) 6= 0.

We identify ∆MTE (u) for u ∈ Supp(P(Z ))

Thus, to integrate MTE to identify treatment parameter,
require Supp(P(Z )) ⊇ {u : ωj (u) 6= 0}

Strong requirement for traditional treatment parameters,
typically “identification at infinity” requirement.
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Using MTE for Identification of Treatment Effects (cont’d)

To integrate MTE to identify treatment parameter,
require Supp(P(Z )) ⊇ {u : ωj (u) 6= 0}

For traditional parameters, this requirement is very
strong:

For ATE, need Supp(P(Z )) = [0, 1]
For TT, need Supp(P) = [0, pu]
For TUT, need Supp(P) = [pl , 1]

Can identify these parameters with an alternative
identification strategy under slightly weaker conditions,
but still require identification at infinity.
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Using MTE for Identification of Treatment Effects (cont’d)

Without large support, can still:

1 Bound traditional parameters
(Heckman and Vytlacil, 2001)

2 Understand treatment effect for some groups of
individuals, and understand part of the connection
between selection and individual effects, by examining
MTE over identified values.

3 Identify average effect for those on margin of indifference,
and effect of marginal policy changes.
(Carneiro, Heckman and Vytlacil 2010, 2011).

4 Impose some functional form/parametric restrictions and
extrapolate to some extent.
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Nonparametric Estimation of MTE

Making conditioning on X explicit:

∂

∂p
E (Y | P(Z ) = p,X = x)︸ ︷︷ ︸

LIV

= E (Y1 − Y0|X = x ,UD = p)︸ ︷︷ ︸
MTE

.

In theory, can non parametrically estimate
∂
∂p
E (Y | P(Z ) = p,X ), for example, through local

polynomial regression of Y on (X ,P).
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Nonparametric Estimation of MTE

Problem: Curse of Dimensionality

If X contains continuous elements, especially multiple
continuous elements, point wise estimation of
E (Y | P(Z ) = p,X = x) will be very poor.

Formally: very slow rate of convergence. Expect large
bias and high imprecision in finite samples. Expect
asymptotics to be poor guide.

Point-wise estimation of derivative of
E (Y | P(Z ) = p,X = x) should be even more difficult.

All of above problems, but more so.
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Nonparametric Estimation of Treatment Parameters through MTE

Additional Problem:
Support Problem, Irregular Estimation

To estimate MTE non parametrically for all evaluation
points, need support of P(Z ) conditional on X to be full
unit interval.

Requires extremely powerful instrument.

To integrate up MTE to traditional parameters, require
MTE over broad support.

Traditional treatment parameters are “non-smooth”
functions MTE, expect slower than

√
N estimation.
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Nonparametric Estimation of MTE, Treatment Parameters

Realistically, would need extremely large samples and
extremely strong instruments to have nonparametric
estimation of MTE and of traditional treatment
parameters to be feasible, even if X is low dimensional.

What is feasible?

Estimation of average effect for those on margin of
indifference, and effect of marginal policy changes,
fundamentally easier than for traditional parameters.
Can estimate IV, interpret.
Can follow bounding approach.
Can incorporate some parametric functional form
restrictions, follow semi parametric or parametric
estimation approaches.
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Semiparametric Estimation of MTE

Can impose semi parametric structure, e.g., if Y is continuous,
can follow Heckman, Urzua and Vytlacil (2006) and Carneiro,
Heckman and Vytlacil (2010,2011):

Y1 = Xβ1 + U1,

Y0 = Xβ0 + U0

⇒ Y = Xβ0 + DX (β1 − β0) + D(U1 − U0) + U0

⇒ E (Y | X ,P(Z )) = Xβ0 + P(Z )X (β1 − β0) + K (P(Z ))
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Semiparametric Estimation of MTE (cont’d)

E (Y | X ,P(Z )) = Xβ0 + P(Z )X (β1 − β0) + K (P(Z ))

If impose joint normality assumptions, than standard
parametric problem.

Otherwise, K (·) unknown function.

Note dimension reduction.
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Semiparametric Estimation of MTE (cont’d)

E (Y | X ,P(Z )) = Xβ0 + P(Z )X (β1 − β0) + K (P(Z ))

K (·) unknown function, suggests semiparametric multistep
estimation strategy.

1 Estimate P(Z ) in first step, either parametrically or
semi/nonparametrically (e.g., Klein and Spady).

2 Estimate E (Y | X ,P(Z )) using estimated P(Z ), for
example, using:

Partial linear regression/nonparametric double residual
regression techniques, as in Heckman, Ichimura and
Todd, or
Regress Y on X ,P(Z )X , and a series in P(Z ), adapting
Newey, Powell and Vella.
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Semiparametric Estimation of MTE and Treatment Parameters

Given semi-parametric partially-linear structure, support
conditions now depend on support of P(Z ), not support
of P(Z ) conditional on X . Less restrictive.

If support of P(Z ) is limited, can:

Truncate integration to available support.
Extrapolate.
Follow a bounding approach.
Limit range of treatment parameters to be estimated.
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Parametric Estimation of MTE

Alternatively, can follow a parametric approach, much less
data intensive. For example:

1 If Y continuous, estimate MTE parametrically based on
Heckman 2-step, generalizations of Heckman 2-step,
imposing linear model with joint normality or
generalizations of joint normality on error terms.

See, e.g., Tobias, Heckman and Vytlacil (2003), and
Carneiro, Heckman and Vytlacil (2011).

2 If Y binary, estimate based on bivariate probit, or
generalizations of bivariate probit.

See, e.g., Aakvik, Heckman and Vytlacil (2005).
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Parametric Estimation of MTE

Parametric estimation:

Much less data intensive, reasonably precise estimation
feasible with smaller sample sizes.

Naturally provides extrapolation outside of support, can
estimate MTE over full unit interval and estimate all
treatment parameters.

Negative: less flexible, parametric structure might be
incorrect.
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Example: MTE for Effect of Vocational Rehabilitation on Employment

MTE for Effect of Vocational Rehabilitation on Employment

	
  

Source: Aakvik, Heckman and Vytlacil (2005)
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Example: Effect of Vocational Rehabilitation on Employment

7.5. Cream-skimming: the relationship between selection into the program and

outcomes

A central question in the analysis of a program like VR is whether those who
benefit the most from it are those most likely to participate in it. We have already
noted that ATE is greater than TT ; i.e., that randomly selected persons benefit more
from the program than those who participate in it. This suggests that the
combinations of UD and Z values that promote program participation are perversely
associated with the observed and unobserved factors associated with gains from the
program.
In order to determine the extent of cream-skimming on both observables and

unobservables, it is necessary to relate D (as defined by the various means and
distributional parameter analogues) to ZbD and UD: We have estimated relation-
ships among D and (Xb1;Xb0;U1;U0Þ; however. So the problem is how to go from
the relationships we have estimated to determine the relationships between gains and
ZbD and UD:
Given the factor structure model, we can easily determine how variation in UD

affects U1 and U0 (see Eq. (12)). By virtue of independence assumption (iii), the
factor relationship does not depend on values of ZbD; Xb1 and Xb0: We have used
this relationship in computing Fig. 1 and in inferring that selection into the program
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Table 5

Mean and distributional treatment parameters

ATE Distributional version of ATE:

EðDÞ ¼ �0:014 Pr½D ¼ 1� ¼ 0:225
ðstandard error ¼ 0:08Þ Pr½D ¼ 0� ¼ 0:532

Pr½D ¼ �1� ¼ 0:240

TT Distributional version of TT :

EðD j D ¼ 1Þ ¼ �0:110 Pr½D ¼ 1 j D ¼ 1� ¼ 0:178
ðstandard error ¼ 0:09Þ Pr½D ¼ 0 j D ¼ 1� ¼ 0:534

Pr½D ¼ �1 j D ¼ 1� ¼ 0:288

MTE with UD ¼ 2 Distributional version of MTE with UD ¼ 2:

EðD j UD ¼ 2Þ ¼ 0:224 Pr½D ¼ 1 j UD ¼ 2� ¼ 0:350
ðstandard error ¼ 0:17Þ Pr½D ¼ 0 j UD ¼ 2� ¼ 0:524

Pr½D ¼ �1 j UD ¼ 2� ¼ 0:126

MTE with UD ¼ 0 Distributional version of MTE with UD ¼ 0:

EðD j UD ¼ 0Þ ¼ �0:014 Pr½D ¼ 1 j UD ¼ 0� ¼ 0:219
ðstandard error ¼ 0:07Þ Pr½D ¼ 0 j UD ¼ 0� ¼ 0:549

Pr½D ¼ �1 j UD ¼ 0� ¼ 0:233

MTE with UD ¼ �2 Distributional version of MTE with UD ¼ �2:
EðD j UD ¼ �2Þ ¼ �0:255 Pr½D ¼ 1 j UD ¼ �2� ¼ 0:119
ðstandard error ¼ 0:16Þ Pr½D ¼ 0 j UD ¼ �2� ¼ 0:508

Pr½D ¼ �1 j UD ¼ �2� ¼ 0:373

A. Aakvik et al. / Journal of Econometrics 125 (2005) 15–5140

Source: Aakvik, Heckman and Vytlacil (2005)
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Example: Effect of Year of College on Wages (Parametric)

MTE for Effect of Year of College on Wages
2767carneiro et al.: estimating marginal returns to educationVOL. 101 NO. 6

U​S​). Individuals choose the schooling sector in which they have comparative advan-
tage. The magnitude of the heterogeneity in returns on which agents select is sub-
stantial: returns can vary from −15.6 percent (for high ​U​ S​ persons, who would lose 
from attending college) to 28.8 percent per year of college (for low ​U​ S​ persons).16 
The magnitude of total heterogeneity is likely to be even higher since the MTE is 
the average gain at that quantile of desire to attend college. In general, there will be 
a distribution of returns centered at each value of the MTE. Furthermore, once we 
account for variation in X and its impact on returns through X(​δ​1​ − ​δ​0​), we observe 
returns as low as −31.56 percent and as high as 51.02 percent.

Using the weights presented in online Appendix Table A-1B, we can construct 
the standard treatment parameters from the MTE. We present the results in the 
first column of Table 5 (standard errors are bootstrapped). These include marginal 
returns to the three different policies considered in Table 1 (MPRTE), which are all 

16 One unattractive feature of the normal model is that (for our estimates of ​σ​1V​ and ​σ​0V​) MTE(x, 0) = + ∞ and 
MTE(x, 1) = −∞. In order to get finite values at the extremes of the normal MTE, we restrict the support of ​U​ S​ to 
be between 0.0001 and 0.9999.
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Figure 1. MTE Estimated from a Normal Selection Model

Notes: To estimate the function plotted here, we estimate a parametric normal selection model by maximum likeli-
hood. The figure is computed using the following formula: 

 	  ΔMTE (x, uS)  =  μ1 (x)  −  μ0 (x)  −  (σ1V  −  σ0V) Φ−1 (uS),

where ​σ​1V​ and ​σ​0V​ are the covariances between the unobservables of the college and high school equation and the 
unobservable in the selection equation; and X includes experience, current average earnings in the county of resi-
dence, current average unemployment in the state of residence, AFQT, mother’s education, number of siblings, 
urban residence at 14, permanent local earnings in the county of residence at 17, permanent unemployment in the 
state of residence at 17, and cohort dummies. We plot 90 percent confidence bands.

Source: Carneiro, Heckman and Vytlacil (2011)
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Example: Effect of Year of College on Wages (Semi-Parametric)

MTE for Effect of Year of College on Wages
2771carneiro et al.: estimating marginal returns to educationVOL. 101 NO. 6

mean values in the sample. As above, we annualize the MTE. Our estimates show 
that, in agreement with the normal model, E(​U​ 1​ − ​U​ 0​ | ​U​ S​ = ​u​S​) is declining in ​u​S​, i.e., 
students with high values of ​U​ S​ have lower returns than those with low values of ​U​ S​.

Even though the semiparametric estimate of the MTE has larger standard errors 
than the estimate based on the normal model, we still reject the hypothesis that its 
slope is zero. We have already discussed the rejection of the hypothesis that MTE is 
constant in ​u​S​, based on the test results reported in Table 4, panel A. But we can also 
directly test whether the semiparametric MTE is constant in ​u​S​ or not. We evaluate 
the MTE at 26 points, equally spaced between 0 and 1 (with intervals of 0.04). We 
construct pairs of nonoverlapping adjacent intervals (0–0.04, 0.08–0.12, 0.16–0.20, 
0.24–0.28, …), and we take the mean of the MTE for each pair. These are LATEs 
defined over different sections of the MTE. We compare adjacent LATEs. Table 4, 
panel B, reports the outcome of these comparisons. For example, the first column 
reports that

 	  E (​Y​1​  − ​ Y​ 0​ | X  = ​ _ x ​, 0  ≤ ​ U​ S​  ≤  0.04) 

 	  −  E (​Y​1​  − ​ Y​0​ | X  = ​ _ x ​, 0.08  ≤ ​ U​ S​  ≤  0.12)  =  0.0689.
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Figure 4. E(​Y​ 1​ − ​Y​ 0​ | X, ​U​ S​) with 90 Percent Confidence Interval— 
Locally Quadratic Regression Estimates

Notes: To estimate the function plotted here, we first use a partially linear regression of log wages on polynomials 
in X, interactions of polynomials in X and P, and K(P), a locally quadratic function of P (where P is the predicted 
probability of attending college), with a bandwidth of 0.32; X includes experience, current average earnings in the 
county of residence, current average unemployment in the state of residence, AFQT, mother’s education, number of 
siblings, urban residence at 14, permanent local earnings in the county of residence at 17, permanent unemployment 
in the state of residence at 17, and cohort dummies. The figure is generated by evaluating by the derivative of (9) 
at the average value of X. Ninety percent standard error bands are obtained using the bootstrap (250 replications).

Source: Carneiro, Heckman and Vytlacil (2011)
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Example: Effect of Year of College on Wages

Effect of Year of College on Wages

2768 THE AMERICAN ECONOMIC REVIEW october 2011

below the return to the average student (T T = E(β | S = 1)), the average person 
(ATE = E(β)), and the IV estimate. But it is not clear if these estimates are reliable, 
given the strong normality assumption used to generate them. We next corroborate 
these estimates of marginal returns using a more robust semiparametric approach.

C. Estimating the MTE and Marginal Policy Effects  
Using Local Instrumental Variables

An alternative and more robust approach for estimating the MTE estimates 
E(Y | X, P(Z) = p) semiparametrically and then computes its derivative with respect 
to p, as shown in the analysis of equations (5) and (6). If all we are willing to assume 
is that (​U​ 0​, ​U​ 1​, V ) is independent of Z given X, then it is only possible to estimate the 
MTE over the support of P conditional on X. Figure 2 plots f (P | X), the density of P 
given X (P is estimated by a logit). Since X is multidimensional, we use an index of 
X (X[​δ​1​ − ​δ​0​]). It is striking how small the support of P is for each value of the X 
index. It is not possible to estimate MTE over the full unit interval, and as a conse-
quence, it is not possible to estimate conventional treatment parameters such as the 
average treatment effect (E(β)) or the effect of treatment on the treated (E(β | S = 1)).  
It is still possible, however, to estimate MPRTE, since this parameter only puts posi-
tive weight over sections of the MTE that are identified within the support of f (P | X).

Empirically, it is very difficult to apply the procedure described in Section I while 
conditioning on X nonparametrically. We first proceed by invoking the stronger 
assumption that (X, Z) is independent of (​U​ 0​, ​U​ 1​, ​U​ S​). We relax it below. Under this 

Table 5—Returns to a Year of College

Model Normal Semiparametric

ATE = E(β) 0.0670 Not identified
(0.0378)

TT = E(β | S = 1) 0.1433 Not identified
(0.0346)

TUT = E(β | S = 0) −0.0066 Not identified
(0.0707)

MPRTE
Policy perturbation Metric
​Z​ α​ k

 ​ = ​Z ​k​ + α | Z γ − V | < e 0.0662 0.0802
(0.0373) (0.0424)

​P​ α​ = P + α  | P − U | < e 0.0637 0.0865
(0.0379) (0.0455)

​P​ α​ = (1 + α)P  | ​ P _ 
U

 ​ − 1 | < e 0.0363 0.0148
(0.0569) (0.0589)

Linear IV (Using P(Z) as the instrument) 0.0951
(0.0386)

OLS 0.0836
(0.0068)

Notes: This table presents estimates of various returns to college, for the semiparametric and 
the normal selection models: average treatment effect (ATE), treatment on the treated (TT), 
treatment on the untreated (TUT), and different versions of the marginal policy relevant treat-
ment effect (MPRTE). The linear IV estimate uses P as the instrument. Standard errors are 
bootstrapped (250 replications). See online Appendix Table A-1 for the exact definitions of 
the weights. See Table 1 for the weights for MPRTE. For more discussion of MPRTE, see 
Carneiro, Heckman, and Vytlacil (2010).

Source: Carneiro, Heckman and Vytlacil (2011)
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