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Notation

Counterfactual Notation

Notation:

@ D; dummy variable for treatment for individual i,
D; = 1 if treated, = 0 otherwise.

@ Yi; potential outcome for individual i if treated,
what would be observed if treated.

@ Yp, potential outcome for individual 7 if not treated,
what would be observed if not treated.

@ Observed outcome for individual i:

Y, ifD=1,

\/i:YOi+Di(Y1i—Y0i):{Y D — 0
0i i = 0.



Notation

Counterfactual Notation (cont'd)

Define:

@ X; controls, called confounders within biostatistics,
observed variables that directly affect Yg;, Yi;.

@ Z;, instruments, variables that affect D; but do not
directly affect Yo,', Yli-

@ Potential treatments
{Di(z) : z € Z},

treatment choice that / would have chosen if randomly
assigned Z; = z, where Z is set of possible instrument
values.



Notation

Treatment Effects and Heterogeneity

Let A; = Y7, — Yoi, treatment effect for individual i.

Central issue: how does A; vary with ?

@ Homogenous treatment effect:
Treatment effects A; constant across individuals

(conditional on X;)

@ Heterogeneous treatment effects:
Treatment effects A; vary across individuals
(even conditional on X;)

Allowing for heterogeneous treatment effects fundamentally
changes the evaluation problem if there is “Essential
Heterogeneity” (Heckman, Vytlacil and Urzua, 2006).



Notation

Treatment Effects and Heterogeneity

Essential Heterogeneity
(Heckman, Vytlacil and Urzua, 2006):

] Yl,' - Yo,' ﬂ_ D,|X,

@ Agents select into treatment based, in part, on their own
idiosyncratic effect.

Allowing for Essential Heterogeneity fundamentally changes
the evaluation problem, raising questions as to what is the
parameter of interest, complicating identification analysis, and
changing the interpretation of results.
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Evaluation Problem

Evaluation Problem with Homogeneous Treatment Effect: Selection Bias

Evaluation Problem (Homogeneous Treatment Effects)
Suppose A a constant.
Parameter of interest: A = Yi; — Yoi.

Classical evaluation problem: Selection Bias

A=A=Y = YOi‘f‘D;A
= E(Y;|D; = 1) — E(Y;|D; = 0)
— A+ E(Yo|D; = 1) — E(Yoi|D; = 0).

-~

Selection Bias

Same analysis conditional on X; if treatment effect constant
conditional on X;.



Evaluation Problem

Evaluation Problem (Homogeneous Treatment Effect): Selection Bias

E(Yo|D = 1) — E(Y,|D = 0) is selection bias:

@ Selection on the base state

if treated had not received treatment, would they have
similar outcomes as the non treated?

@ Sometimes called “Ability Bias” in labor economics.

e Common worry: omitted variable (e.g., ability), omitted
variable correlated with selection into treatment.

@ Common solution: instrumental variables.



Evaluation Problem

Evaluation Problem with Heterogeneous Treatment Effects: Parameters

Allow Essential Heterogeneity.
A; random, possibly correlated with treatment choice.

What is parameter of interest?

Most often, consider average treatment parameters:
@ Average Treatment Effect, ATE = E(Y1; — Yoi),
@ Treatment on the Treated, TT= E(Y1; — Yoi|D; = 1),
@ Treatment on the Untreated, TUT= E(Y3;, — Y0;|D; = 0).

Can also consider 1V-defined parameters (e.g., LATE, Imbens
and Angrist 1994), Policy Relevant Treatment Effect
(Heckman and Vytlacil, 2001), Person Centered Treatment
Effects (Basu, 2013), etc



Evaluation Problem

Evaluation Problem with Heterogeneous Treatment Effects: Parameters
(Cont'd)

Average treatment parameters:
@ Average Treatment Effect, ATE = E(Y1; — Yoi).
@ Treatment on the Treated, TT= E(Y1; — Yoi|D; = 1).
@ Treatment on the Untreated, TUT= E(Y};, — Y0;|D; = 0).

If treatment effects are heterogeneous without Essential
Heterogeneity (Y1; — Yo LL D;|X;), then all of these mean
parameters coincide (conditional on X).
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Evaluation Problem

Evaluation Problem with Heterogeneous Treatment Effect:
Selection Bias and Sorting Gain

Allow Heterogeneous Treatment effect.

Y = Yo+ D(Y1— o).

E(Y|D = 1) — E(Y|D = 0)
= E(Y1 = Yo|D =1)+ E(Yo|D =1) — E(Y5|D = 0)

~~

TT Selection Bias

— ey { E RS L L B0

= ATE + Sorting Gain +  Selection Bias
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Evaluation Problem

Evaluation Problem with Heterogeneous Treatment Effect:
Selection Bias and Sorting Gain (cont'd)

With heterogeneous effects, bias depends on parameter of
interest.

@ For TT, bias is selection bias, as before.
e For ATE, additional bias term: sorting gain

e selection on the gain, benefit to those who sort into
treatment versus average person.

e Expect nonzero under essential heterogeneity

e Positive for Roy model.

o If effects are heterogeneous but without essential
heterogeneity, than analysis is the same as for
homogeneous case, sorting gain is zero.

@ Classical IV results do not hold
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Evaluation Problem

Evaluation Problem with Heterogeneous Treatment Effect:
Selection Bias and Sorting Gain (cont'd)

When considering alternative methods to evaluate effects of a
treatment, important to consider:

@ Essential heterogeneity?
© What is parameter of interest?

© What is bias of method for particular parameter?
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Potential “Solution”: Instrumental Variables

@ Suppose for instrument Z:

©Q Cov(D, Z) # 0 (Instrument Relevance),
Q@ Z 1L Yu, Y1 (Instrument Exogeneity).

@ Probability limit of IV:

Cov(Y, Z)

imlV = .
PIMIY = Cov(D, 2)

e Will plim/V correspond to an object of interest?
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Potential “Solution”: Instrumental Variables

Y = Yo+D(Yi—Yo)
= E[Y0]+DE[Y1— Y0]+{€+7’]D},
where
= Yy — E[Yo]
n = (Y]_—Yo)—E(Y]_—Yo)

Need Z to be uncorrelated with [¢ + 1D] to use IV
identify E(Yl — Yo)
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Potential “Solution”: Instrumental Variables

= [Yo— E(Y0)]
n = (Yl—YO)—E(Yl—Yo)

Need Z to be uncorrelated with [¢ + D] to use IV
identify E(Yl — Yo)

Cov(Z,e) =0

Z 1l Yo, Yl = COV(Z,T]) _ 07

-+ Cov(Z,nD) = 0.
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IV when A is a constant

Suppose A is a constant = 7 = 0.
e Cov(Z,e +nD) = Cov(Z,e) = 0 and thus

, _ Cov(Z,Y)

o If other instruments exist, each identifies the same
parameter.

@ No restriction is needed on selection process.
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Suppose A Varies Across Individuals = 1 Random.

Y:

where € = [Y() — E(Yo)], n = (Y]_ — Yo) — E(Y]_ — Yo)

E[nD|Z] = E(n| D =1,Z)Pr(D =1 2).

Need Z to be uncorrelated with [¢ + D] to use IV
identify E( Yl — Yo)

This condition will be satisfied if policy adoption is made
without knowledge of n = (Y1 — Yo) — E(Y1 — Y0).

If decisions about D are made with partial or full
knowledge of 7, expect E(n | D =1, Z) to depend on Z
and thus for IV not to identify E(Y; — Yp).
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e Without more conditions, IV does not identify any ATE or
any other interpretable parameter under essential
heterogeneity.

e With additional conditions, IV does identify an
interpretable parameter: Local Average Treatment Effect
(LATE; Imbens and Angrist, 1994).
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Imbens Angrist conditions (1994)

IV-1 (Independence)
Z 1 (Y1, Yo {D(2)},e2).

Pr(D =1| Z) depends on Z.

IV-3 (Monotonicity)

For all z,Zz' € Z, either D;(z) > D;(2’) for all i,
or D; (z) < D;(Z') for all i.
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Vytlacil (2002) Equivalence

Let 1[-] denote the logical indicator function.

Vytlacil (2002) shows Imbens-Angrist conditions are equivalent
to the nonparametric selection model:

SELECTION-1 (Selection Model)

D,‘ = l[u(Z,) Z U,'], Z,' AL (Yo,', Yl,', U,‘), and ,U() is a
nontrivial function of Z;.
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Imbens Angrist (1994)

For Z = 0,1, Imbens and Angrist show that these conditions

imply that
. E(Y|Z:1)—E(Y|Z:O)
PimIV. = D =1[Zz=1)—P(D=1]Z=0)
E(Y1—Yo|D(1)=1,D(0)=0)

= LATE

@ The mean gain to those induced to switch from into
treatment by a change in Z from 0 to 1.

@ Not always of a priori interest.

@ More complicated expression if Z non-binary.
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Imbens Angrist

@ In general, LATE # E(Y1 — Yo), E(Y1— Yo | D =1), or
any other parameter of a priori interest.

@ Different instruments define different parameters.

@ Having a wealth of different strong instruments does not
improve the precision of the estimate of any particular
parameter.
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Alternative Monotonicity Restrictions

@ Classical IV imposes strong homogeneity assumption on
outcome equation but no structure on selection equation.
Does not allow for essential heterogeneity.

@ In contrast, LATE analysis imposes no structure on
outcome equation but imposes monotonicity on selection
equation. Does allow for essential heterogeneity.

@ Possible to test for presence of essential heterogeneity
(Heckman, Shmierer, Urzua, 2010)

@ Monotonicity assumption on selection equation is testable
(Kitagawa 2008, and Machado, Shaikh and Vytlacil,
2013)
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Alternative Monotonicity Restrictions

LATE analysis imposes no structure on outcome equation but
imposes monotonicity on selection equation.

Alternatively, can:

@ Impose monotonicity symmetrically on outcome and
selection equations: Identify sign of average effect, can
bound average effect. Restriction is testable.
(Bhattacharya, Shaikh and Vytlacil, 2012; Shaikh and
Vytlacil, 2011; Machado, Shaikh and Vytlacil, 2013)

@ Impose monotonicity on outcome equation instead of
selection equation: Sign of average effect not necessarily
identified; Can bound average effect; Some strange
implications — passible to have large positive IV imply a
negative average treatment effect. Restriction is testable.
(Machado, Shaikh and Vytlacil, 2013).
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Selection Models

Selection Models

Heckman, Vytlacil and co-authors

@ Impose Nonparametric Selection Model

e By Vytlacil (2002), is equivalent to Imbens and Angrist
(1994) assumptions

e Goals:

o Unify literature with a common set of underlying
parameters interpretable across studies.

e To understand how to connect the results of various
disparate IV estimands within a unified framework.

o Consider strategies other than linear IV.
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Selection Models

Threshold Crossing Model for D

Selection Model:
D=1[up(Z2) -V >0

with Z 1L V.

@ 1p(Z) — V can be interpreted as a net utility for a
person with characteristics (Z, V'), where V is unobserved
by the analyst.

e Vytlacil (2002) shows that this model is equivalent to the
independence and monotonicity restrictions of Imbens and
Angrist.

@ Wider class of latent index models will have a
representation in this form (Vytlacil, 2006).
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Selection Models
Threshold Crossing Model for D: Independence, Propensity Score

We define P(z) as the propensity score:
P(z)=Pr(D=1|Z=2z)=Pr(up(z) > V) = Fv(1(2))

where Fy, is the distribution of V.

As normalization, can rewrite model as

D = 1[up(Z) > V]
= 1[Fv(up(2)) = Fv (V)]
= 1[P(Z) > Up]

with Up = Fy (V) ~ Unif[0, 1]
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MTE

Marginal Treatment Effect: Key, unifying parameter,

AMTE (UD) = E(Y]_ - Yo | UD = UD).

@ MTE is average effect at a given unobserved desire to
participate in treatment.

@ MTE and the local average treatment effect (LATE)
parameter are closely related.
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MTE

@ Under our assumptions, all standard treatment
parameters are weighted averages of MTE with weights
that can be estimated.

Parameter; = /AMTE (up) wj(up)dup
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Table 1A: treatment effects and estimands as weighted averages of the
marginal treatment effect

ATE= E (Y1 — Yo) = [y AMTE () ware (u) du
TT=E(Y:i— Yo |D=1) = [} AMTE (u) wrr (u) du

TUT=E (Y1 - Yo | D=0) = [y AMTE () wryr (u) du
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TablelB: weights

wATE(u) = 1

1— FP(U)
= g p)
wTuT (U) = FP(U)

E((1-P))



Figure 1: weights for the marginal treatment effect for different parameters

h(Up) MTE
35 T 0.35
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MTE

Other parameters that can be represented as weighted average
of MTE include:

@ Probability limit of IV
o LATE

@ Policy Relevant Treatment Effect
(Heckman and Vytlacil, 2001)

@ Marginal Policy Relevant Treatment Effect,
Average Effect of Treatment at the Margin
(Carneiro, Heckman and Vytlacil, 2010, 2011).

@ Person Centered Treatment Effects (Basu, 2013).
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Example: Effect of Year of College on Wages (Parametric)

MTE for Effect of Year of College on Wages

05

0.4

0.1 02 03 04 05 06 07 08 09 1

FIGURE |. MTE ESTIMATED FROM A NORMAL SELECTION MODEL

Source: Carneiro, Heckman and Vytlacil (2011)
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Example: Effect of Year of College on Wages (Semi-Parametric)

MTE for Effect of Year of College on Wages

0.8 T T T T

FIGURE 4. E(Y; — Y| X, Us) WiTH 90 PERCENT CONFIDENCE INTERVAL—
LocALLY QUADRATIC REGRESSION ESTIMATES

Source: Carneiro, Heckman and Vytlacil (2011)
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Example: Effect of Year of College on Wages

Effect of Year of College on Wages

TABLE 5—RETURNS TO A YEAR OF COLLEGE

Model Normal Semiparametric
ATE = E(f) 0.0670 Not identified
(0.0378)
TT = E(3|S = 1) 0.1433 Not identified
(0.0346)
TUT = E(3]S = 0) —0.0066 Not identified
(0.0707)
MPRTE
Policy perturbation Metric
7t =7+« |Zy - V|<e 0.0662 0.0802
(0.0373) (0.0424)
P.=P+a P-Ul<e 0.0637 0.0865
(0.0379) (0.0455)
P, = (1 +a)P \% —l]<e 0.0363 0.0148
(0.0569) (0.0589)
Linear IV (Using P(Z) as the instrument) 0.0951
(0.0386)
OLS 0.0836
(0.0068)

Source: Carneiro, Heckman and Vytlacil (2011)
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Example: MTE for Effect of Vocational Rehabilitation on Employment

MTE for Effect of Vocational Rehabilitation on Employment

02

04

08

08

e E(8] Up =0) + 2(std. o)

E61Up=u)

E(8|Up =) - 2(std. err)

Fig. 1. Estimated marginal treatment cffect

Source: Aakvik, Heckman and Vytlacil (2005)
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MTE

Example: Effect of Vocational Rehabilitation on Employment

ATE
E(4) = —0.014
(standard error = 0.08)

T
E(4|D=1)=-0.110
(standard error = 0.09)
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Identification

Identification of the MTE

o Different parameters can be seen as different weighted
averages of MTE, IV is a weighted average of MTE.

@ If can identify MTE, can:

© Integrate MTE to obtain other parameters of interest

@ Understand connection between selection into treatment
and individual effects.

e How to identify MTE?
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Identification

Identification of the MTE (cont'd)

Heckman-Vytlacil show that LIV (Local Instrumental
Variables) identifies MTE

0
GpEY P2 =p) =E(Yi— Yollp=p).  (61)
N ~~ d I\/I"I,'E

LIV

o Thus AMTE (u) identified by LIV for u € Supp(P(Z)).

@ The greater the variation in P(Z), the greater the range
over which MTE is identified.
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Identification

Using MTE for Identification of Treatment Effects

Treatment Parameter (j) = fol AMTE (1) w; (v) du,

e Identification using this relationship requires identification
of AMTE () for u such that w; (u) # 0.

e We identify AMTE (u) for u € Supp(P(Z2))

@ Thus, to integrate MTE to identify treatment parameter,
require Supp(P(Z)) 2 {u: w; (u) # 0}

@ Strong requirement for traditional treatment parameters,
typically “identification at infinity” requirement.
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Identification

Using MTE for Identification of Treatment Effects (cont'd)

@ To integrate MTE to identify treatment parameter,
require Supp(P(Z)) 2 {u : w; (u) # 0}

e For traditional parameters, this requirement is very

strong:

o For ATE, need Supp(P(Z)) = [0,1]

e For TT, need Supp(P) = [0, pu]

e For TUT, need Supp(P) = [p, 1]
Can identify these parameters with an alternative
identification strategy under slightly weaker conditions,
but still require identification at infinity.
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Identification

Using MTE for Identification of Treatment Effects (cont'd)

Without large support, can still:

© Bound traditional parameters
(Heckman and Vytlacil, 2001)

© Understand treatment effect for some groups of
individuals, and understand part of the connection
between selection and individual effects, by examining
MTE over identified values.

© Identify average effect for those on margin of indifference,
and effect of marginal policy changes.
(Carneiro, Heckman and Vytlacil 2010, 2011).

© Impose some functional form/parametric restrictions and
extrapolate to some extent.
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Estimation, Feasibility, Practicality

Nonparametric Estimation of MTE

e Making conditioning on X explicit:

0

ZE(Y|P2)=pX =

?p(l() P, xz
LIV

= E(%i— YolX =xUp = p).

N

M TE

@ In theory, can non parametrically estimate
DE(Y | P(Z) = p, X), for example, through local
polynomial regression of Y on (X, P).

45 /59



Estimation, Feasibility, Practicality

Nonparametric Estimation of MTE

Problem: Curse of Dimensionality

e If X contains continuous elements, especially multiple
continuous elements, point wise estimation of
E(Y | P(Z) = p,X = x) will be very poor.
o Formally: very slow rate of convergence. Expect large
bias and high imprecision in finite samples. Expect
asymptotics to be poor guide.

@ Point-wise estimation of derivative of
E(Y | P(Z) = p, X = x) should be even more difficult.

e All of above problems, but more so.

46 /59



Estimation, Feasibility, Practicality

Nonparametric Estimation of Treatment Parameters through MTE

Additional Problem:
Support Problem, Irregular Estimation

@ To estimate MTE non parametrically for all evaluation

points, need support of P(Z) conditional on X to be full
unit interval.

e Requires extremely powerful instrument.

@ To integrate up MTE to traditional parameters, require
MTE over broad support.

@ Traditional treatment parameters are “non-smooth”
functions MTE, expect slower than v/ estimation.
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Estimation, Feasibility, Practicality

Nonparametric Estimation of MTE, Treatment Parameters

@ Realistically, would need extremely large samples and
extremely strong instruments to have nonparametric
estimation of MTE and of traditional treatment
parameters to be feasible, even if X is low dimensional.

@ What is feasible?

e Estimation of average effect for those on margin of
indifference, and effect of marginal policy changes,
fundamentally easier than for traditional parameters.

o Can estimate IV, interpret.

e Can follow bounding approach.

e Can incorporate some parametric functional form
restrictions, follow semi parametric or parametric
estimation approaches.
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Estimation, Feasibility, Practicality

Semiparametric Estimation of MTE

Can impose semi parametric structure, e.g., if Y is continuous,
can follow Heckman, Urzua and Vytlacil (2006) and Carneiro,
Heckman and Vytlacil (2010,2011):

o Y1 =Xp1+ U,
° Yo=X0+ Uo
= Y = Xfo + DX(B1 — Bo) + D(Ur — Up) + Uy
= E(Y | X,P(2)) = XpBo+ P(Z2)X(51 — bo) + K(P(Z))
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Estimation, Feasibility, Practicality

Semiparametric Estimation of MTE (cont'd)

E(Y | X,P(2)) = Xpo+ P(2)X(b1 — o) + K(P(Z))

If impose joint normality assumptions, than standard
parametric problem.

Otherwise, K(-) unknown function.

Note dimension reduction.
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Estimation, Feasibility, Practicality

Semiparametric Estimation of MTE (cont'd)

E(Y | X,P(2)) = Xbo+ P(2)X(b1 = o) + K(P(Z))

K(-) unknown function, suggests semiparametric multistep
estimation strategy.

@ Estimate P(Z) in first step, either parametrically or
semi/nonparametrically (e.g., Klein and Spady).
@ Estimate E (Y | X, P(Z)) using estimated P(Z), for
example, using:
o Partial linear regression/nonparametric double residual
regression techniques, as in Heckman, Ichimura and
Todd, or
o Regress Y on X, P(Z)X, and a series in P(Z), adapting
Newey, Powell and Vella.
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Estimation, Feasibility, Practicality

Semiparametric Estimation of MTE and Treatment Parameters

@ Given semi-parametric partially-linear structure, support
conditions now depend on support of P(Z), not support
of P(Z) conditional on X. Less restrictive.

o If support of P(Z) is limited, can:

Truncate integration to available support.

Extrapolate.

Follow a bounding approach.

]
(]
"]
o Limit range of treatment parameters to be estimated.
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Estimation, Feasibility, Practicality

Parametric Estimation of MTE

Alternatively, can follow a parametric approach, much less
data intensive. For example:

@ If Y continuous, estimate MTE parametrically based on
Heckman 2-step, generalizations of Heckman 2-step,
imposing linear model with joint normality or
generalizations of joint normality on error terms.

o See, e.g., Tobias, Heckman and Vytlacil (2003), and
Carneiro, Heckman and Vytlacil (2011).

@ If Y binary, estimate based on bivariate probit, or
generalizations of bivariate probit.

o See, e.g., Aakvik, Heckman and Vytlacil (2005).
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Estimation, Feasibility, Practicality

Parametric Estimation of MTE

Parametric estimation:

@ Much less data intensive, reasonably precise estimation
feasible with smaller sample sizes.

e Naturally provides extrapolation outside of support, can
estimate MTE over full unit interval and estimate all
treatment parameters.

@ Negative: less flexible, parametric structure might be
incorrect.
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Estimation, Feasibility, Practicality

Example: MTE for Effect of Vocational Rehabilitation on Employment

MTE for Effect of Vocational Rehabilitation on Employment

02

04

08

08

e E(8] Up =0) + 2(std. o)

E61Up=u)

E(8|Up =) - 2(std. err)

Fig. 1. Estimated marginal treatment cffect

Source: Aakvik, Heckman and Vytlacil (2005)
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Estimation, Feasibility, Practicality

Example: Effect of Vocational Rehabilitation on Employment

ATE
E(4) = —0.014
(standard error = 0.08)

T
E(4|D=1)=-0.110
(standard error = 0.09)
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Estimation, Feasibility, Practicality

Example: Effect of Year of College on Wages (Parametric)

MTE for Effect of Year of College on Wages

05

0.4

0.1 02 03 04 05 06 07 08 09 1

FIGURE |. MTE ESTIMATED FROM A NORMAL SELECTION MODEL

Source: Carneiro, Heckman and Vytlacil (2011)
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Estimation, Feasibility, Practicality

Example: Effect of Year of College on Wages (Semi-Parametric)

MTE for Effect of Year of College on Wages

0.8 T T T T

FIGURE 4. E(Y; — Y| X, Us) WiTH 90 PERCENT CONFIDENCE INTERVAL—
LocALLY QUADRATIC REGRESSION ESTIMATES

Source: Carneiro, Heckman and Vytlacil (2011)
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Estimation, Feasibility, Practicality

Example: Effect of Year of College on Wages

Effect of Year of College on Wages

TABLE 5—RETURNS TO A YEAR OF COLLEGE

Model Normal Semiparametric
ATE = E(f) 0.0670 Not identified
(0.0378)
TT = E(3|S = 1) 0.1433 Not identified
(0.0346)
TUT = E(3]S = 0) —0.0066 Not identified
(0.0707)
MPRTE
Policy perturbation Metric
7t =7+« |Zy - V|<e 0.0662 0.0802
(0.0373) (0.0424)
P.=P+a P-Ul<e 0.0637 0.0865
(0.0379) (0.0455)
P, = (1 +a)P \% —l]<e 0.0363 0.0148
(0.0569) (0.0589)
Linear IV (Using P(Z) as the instrument) 0.0951
(0.0386)
OLS 0.0836
(0.0068)

Source: Carneiro, Heckman and Vytlacil (2011)
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