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Abstract

This paper assesses the effect of public health insurance on healthcare utilization and health

outcome, by evaluating the newest national public medical insurance program in China,

Urban Resident Basic Insurance (URBMI). The voluntary enrollment scheme introduces a

self-selection bias which may arise from unobserved time-varying factors and time-invariant

individual heterogeneity. Moreover, since this is a national program covering a wide range

of subpopulations, the effect of enrollment in health insurance may vary largely with in-

dividual characteristics. I address both concerns to estimate the causal effect of health

insurance. This paper proposes to use a panel data model with endogenous treatment,

which incorporates unobserved individual heterogeneity flexibly into the outcome model

as an unknown function of observed time-invariant factors. The outcome model of dis-

crete treatment is estimated in the context of a semiparametric setting with triple indexes.

I first propose a two-stage semiparametric least square (SLS) method to consistently esti-

mate the model parameters and then conduct a localized 2SLS procedure to recover the

quantile treatment effect. Identification, consistency and
p

N -asymptotic normality of es-

timators for parameters and marginal effects are proved. Estimation result indicates that

public health insurance program increases total health care expenditure by 11-16 percents.

The marginal treatment effect varies largely across demographic groups. Having health

insurance also shows positive impact on health outcomes, especially for children.

Keywords: Public Health Insurance; Program Evaluation; Healthcare Utilization; Semi-

parametric Estimation; Panel Data;Semiparametric least square; Localized 2SLS
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1. INTRODUCTION

Healthcare accessibility has been one of the social issues that gained the most public at-

tention in China. By 2006, less than 40% of Chinese citizens were enrolled in medical in-

surance program of any kind, including private and public, which leaves more than 700

million people uninsured. As a result, unaffordable access to medical services leads to a

high risk of medical impoverishment among households. In 2007, the Chinese government

launched a new public health insurance program for urban residents in China,Urban Resi-

dent Basic Medical Insurance (URBMI), which is designed to cover all disavantaged urban

residents who are not eligible for employment-based insurance, including elderly, children,

students and unemployed adults.

In this paper, I examine the effect of Chinese Urban Resident Basic Medical Insur-

ance (URBMI) after four years of program implementation, i.e. until 2011, using a panel

survey dataset from Chinese Health and Nutrition Survey (CHNS). The evaluation is ar-

ranged around two main aspects of potential insurance benefits: healthcare utilization and

health condition. By reducing the cost of healthcare, medical insurance is supposed to

raise the usage of medical service. Therefore, increasing healthcare utilization is the direct

policy goal of a public health insurance program. Ultimately, the increased consumption

of healthcare utilization should translate into enrollees’ better health status, which is an

important measure of the ultimate policy goal of improving social welfare. Hence, I also

investigate the impact on health outcomes from this program.

Evaluating the causal effect of enrolling in this public insurance program is not straight-

forward since the enrollment is voluntary. Endogeneity bias is likely to arise both from

time-varying unobserved factors such as changing attitudes towards health and demand

shocks on health related consumption, as well as time-invariant individual heterogeneity,

such as long run overall health conditions. The argument goes as follows: an individual

who values health more is more likely to enroll and at the same time, use health care ser-

vices more often. On the other hand, an individual with better overall health tends to have

lower demand for both health insurance and health care services. Hence, the sources of

self-selection into insurance program can be multidimensional and the direction of bias is

difficult to predict. Correcting for self-selection bias from multiple sources is the key effort

of this paper.

In addition, my preliminary study using linear panel data model with IV and fixed-

effect finds that the effect of URBMI varies largely with age, income, education level and

geographic region. For example, having URBMI can raise children’s healthcare utilization
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by as large as 140% and increases the probability of being in good overall health condition

by 15-20%, while it shows no significant effect on the elder population on any measures

on health care usage and outcome. The heterogeneous marginal treatment effect calls for

a more flexible econometric model which can incorporate individual observed and unob-

served characteristics into the marginal effect function.

In this paper, I propose to use a general panel data model with endogenous and dis-

crete treatment regressors. The nature of panel data allows one to handle sources of en-

dogeneity which are unobserved but persistent over time ("fixed effect"). Departing from

usual additive structure of such unobservables, such as fixed effect specified in linear mod-

els, this paper considers a more general class of nonseparable models. The main quantity

of interest is the marginal treatment effect, which can vary by individual fixed effects. The

model considered in this paper can be written as:

Yi t = F (Xi t , ai ,Ti t )+εi t , t = 1, ...,T (1.1)

where i = 1,2, ..., N , Yi t is a continuous outcome of individual i at time t , such as health

care expenditure, in-patient treatment days, biomakers or subjective health ratings; Xi t

are observed explanatory variables; Ti t is the discrete treatment variable, which indicates

enrollment in URBMI; (ai ,εi t ) denotes unobservables, which can both be correlated with

the enrollment indicator. Specifically, ai is the time-invariant individual fixed effect, which

enters the treatment function nonadditively.

Econometric literatures have extensively explored models with binary treatment and

have extended the topic from parametric analysis to nonparametric ones, which allows

the incremental effect of the discrete treatment to depend on other exogenous covari-

ates flexibly. The main approach for tackling endogeneity in discrete treatment model

is an IV estimator or nonparametric version of 2SLS. Das (2005)[4] developed a two-step

estimator which substitutes nonparametric estimation of the instrument in the outcome

model to identify the local average treatment effect. In a semiparametric context, Klein

et.al(2015)[10] propose an IV estimator which is robust to misspecification of the treatment

models, and also develop the distributional results for marginal treatment effect.

This paper builds on the growing literature of discrete treatment model with endo-

geneity but extends it to a panel data setting. Recent papers have been working on panel

data models with fewer parametric restrictions. In most of these studies, individual hetero-

geneity enter the model in an additive manner. For example, Carroll et.al 2008[5] estimate

a nonparametric panel data model with additive fixed-effect using first-differencing. Sim-

ilarly, Soberon et.al [16] handles a panel data model with discrete treatment and varying
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coefficient, using first differencing and local linear regression. Meanwhile, there are other

papers study panel data models with nonadditive time-invariant unobservables by impos-

ing various assumptions. Atonji et.al (2005 [1]) impose exchangeability assumptions on the

distribution of individual fixed-effects conditioned on values of endogenous variable and

use a control approach to estimate the marginal effect. Hoderlein (2012 [6]), which requires

conditional independence of time-varying unobservables and endogenous regressors con-

ditioned on individual fixed-effect, to identify local average response on a subpopulation

of "stayer", whose explanatory variables stay unchanged over time. However, only contin-

uous endogenous variables are considered in above mentioned models.

This paper also deals with nonseparable model but focus specifically on the nonad-

ditivity of the time-invariant unobservables. It differs from existing literature in several

ways. First of all, compared to general treatment effect models, I utilize information from

repeated observations within an individual. Hence, marginal treatment effect conditioned

on individual’s time-invariant characteristics can be estimated, which pins down treatment

effect more specifically to an individual. Compared to other panel data models with non-

separable structures, this paper deals with a discrete treatment variable. Many existing

estimation methods do not apply, such as control function approach. Lastly, I do not im-

pose restrictions of either exogeneity or stationality on the time-varying unobservables, i.e.

εi t in Eq (1.1). Hence, the endogeneity in this model can arise from either individual fixed-

effect, or other time-varying unobservables, which is more applicable in many empirical

analyses.

To identify the model, we adopt a flexible version of the modeling device proposed in

Mundlak (1978[14]) and Chamberlain (1984 [3]), which assume that the unobserved indi-

vidual heterogeneity is related to endogenous regressor only through the time-averages of

exogenous variables. Denote X̄i ≡ T −1 ∑T
t=1 xi t , the time-average of all explanatory variable

X . Assume:

ai = f (x̄i )+ηi (1.2)

where f (.) is an unknown function of x̄i , and ηi is an idiosyncratic shock in the fixed-effect,

which is independent from the discrete treatment. To be specific, the choice of health in-

surance purchase can be endogenous because of unobserved underlying health condition

of an individual. An individual with a better overall health condition has lower demand

for both health insurance and health care service. In the context of our modeling device,

unobserved health conditions can be a function of the long run average of observed health

measurements, such as blood pressure or physical functionality, or even subjective rating

of health, which is represented by f (x̄i ). Meanwhile, there are some unobserved factors
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in health conditions, such as genetic determinants. However, since such factors are not

shown to the individual, they will not directly play a role in his choice of insurance pur-

chase, i.e. the treatment. Hence, such factors will be modeled as idiosyncratic shock, ηi .

Note that this shock is time-invariant as well. A similar approach has been used in various

studies with panel data models, such as Semykina and Wooldridge. (2010[15]), and Maurer

et.al 2011.[13]

To reduce dimensionality for feasibility of applications with smaller sample size, semi-

parametric model with triple-indices specification is estimated. We propose a two-step

procedure to recover the marginal treatment effect. Due to the discrete nature of treatment

variable, the outcome model can be represented in an additive separable potential out-

come framework. This allows the implementation of a semiparametric least square (SLS)

with "plug-in" propensity score as instrumental variable. Based on the estimated model

parameters, a localized 2SLS procedure is conducted to recover the marginal treatment

effect function. The rest of this paper will be organized as follow to obtain the result: in

Section 2, I will describe the model in semiparametric context, and discuss condition for

identification. Section 3 provides estimators for parameters and marginal treatment effect.

Large sample properties including consistency and asymptotic distribution are discussed

in Section 4. Lastly, a Monte Carlo simulation study of the proposed estimator is shown

in Section 5, along with the estimation result on the quantile marginal treatment effect of

public health insurance URBMI in China.

2. ECONOMETRIC MODEL

Consider the following outcome model of discrete treatment, for individual i at time t =
1,2, ...,T , denote Yi t as the continuous outcome, Xi t a vector of exogenous variables, and

Ti t as a binary indicator of treatment 1. We impose a general structure in the model as

follows:

Yi t = F (Xi t , ai ,Ti t )+εi t (2.1)

where ai is the time-invariant individual heterogeneity which is not directed observed but

can potentially correlate with treatment variable Ti t . In addition, εi t is a time-varying

unobserved error term of Yi t . Conditional mean independence of ε from x is assumed

E(ε|X ) = 0.

1assume only one treatment choice here but the model could be easily extended to multiple discrete treat-
ment options
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To complete the model specification, we assume a threshold crossing model for the binary

treatment. For time period t = 1,2, ...,T , individual chooses treatment at time t if the per-

ceived gross benefit exceed some threshold:

Ti t = 1{g (Z1i t ,bi ) > ui t } (2.2)

where Zi t denotes a vector of exogenous variables. bi is an unobserved individual fixed

effect in the treatment model. There is no additional assumption on the parametric distri-

bution of error term ui t . Note that for the model to be identified, Zi t contains instrumental

variables which are excluded in Xi t .

Consider the limitation of nonparametric model in applications with smaller sam-

ple size, for estimation purposes, semiparametric specification is further imposed on the

model. In outcome model, suppose exogenous variables Xi t enter the model through a lin-

ear index V1i t = Xi tβ. Similarly, in the treatment model, Zi t take effect through linear index

V2i t = Zi tγ. Index assumption yields the following model:

Yi t = F (Xi tβ, ai ,Ti t )+εi t

= F (V1i t , ai ,Ti t )+εi t

(2.3)

Ti t = 1{g (Zi tγ,bi ) > ui t }

= 1{g (V2i t ,bi ) > ui t }
(2.4)

2.1. INDIVIDUAL-SPECIFIC HETEROGENEITY

As motivated in Section I, assume that the individual-specific effect, although unobserved,

depends on some time-invariant observed factors. Hence, here we model the individual

fixed effect as a function of the time average of observed variables. Specifically, the follow-

ing structure is considered in the outcome model:

ai = f (X̄i )+ηi (2.5)

where X̄ = 1
T

∑T
t=1 Xi t , a vector of time averaging value of each variable Xi t . And ηi is a

time-invariant shock to the individual fixed effect, which is independent of X̄i .

To construct the individual heterogeneity function, it is neither necessary to include

time average of all variables in Xi t , nor required to include excluded variables from the

main model. For example, in previous case of health condition as individual heterogene-
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ity, subjective health measures, attitude towards health may serve as better determinant

for health condition than education or income. It is also unnecessary to include additional

excluded variable. For identification purpose, it is only required for at least 1 variable in

Xi t to be time-varying. For simplification, we assume that X̄ and Xi t contain same set of

variable.

The modeling for individual fixed-effect can be easily adopted in a wide range of em-

pirical analysis. For example, in the study of return to college education, decision to attend

college is a discrete but endogenous variable which may be correlated with unobserved

long run individual ability. Similarly, individual ability can be decomposed into two parts.

The first part of ability can be reflected by long run observed cognitive performances, such

as average test scores (SAT, GPA etc.), as well as measurable non-cognitive skill sets. How-

ever, there can also be a second part of ability which is not reflected by individual’s long

run characteristics at the moment of college attending decision. For instance, the skill set

that predicts academic performance may be different from the skill set that predicts work-

ing performance. Nevertheless, by the time of choosing college, abilities for work are not

shown to individual and will not directly determine his choice of college attending.

To be consistent with the semiparatric outcome model, linear index assumption is

imposed on the fixed-effect structure:

ai = f (X̄iα)+ηi (2.6)

The original treatment model can be rewritten as a double-index model:

Yi t = F (Xi tβ, ai ,Ti t )+εi t

= F (V1i t , f (V ai )+ηi ,Ti t )+εi t

(2.7)

Similarly, the treatment model follows the same structure for individual heterogeneity:

bi = h(Z̄iκ)+µi (2.8)

It can be specified as a double-index model as well:

Ti t = 1{g (Zi tγ,bi ) > ui t }

= 1{g [V2i t ,h(V bi )+µi ] > ui t }
(2.9)

Such specification has an advantage over traditional approach in which the individual-

specific effect enters outcome model additively. It allows the unobserved individual het-
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erogeneity to directly enter the treatment function, which enables the marginal effect to be

individual specific. Although certain structure is imposed on ai and bi , the semiparamet-

ric approach still leave room for flexibility in the functional form of fixed effect. Lastly,in

contrast to traditional differencing approach for additive specification, this model will pre-

serve the individual fixed-effect during estimation, which will provide additional informa-

tion specifically on the effect of individual heterogeneity itself.

2.2. IDENTIFICATION

The main identification strategy adopted in this paper is instrumental variable approach.

Define the conditional probability function for treatment as:

E(Ti t |Zi t , Z̄i ) = P(Ti t = 1|Zi t , Z̄i ) ≡ p(Zi t , Z̄i ) (2.10)

where p(Zi t , Z̄i ) is an unknown function of instrumental variables zi t . Due to the discrete

nature of treatment variable, we can write the outcome model can be represented in a sep-

arable manner. Based on the estimation of propensity score, a "plug-in" type of method

will be conducted by replacing the endogenous treatment with with instrument to perform

semiparametric-least-square. For identification, following assumptions on the instrument

are specified:

A. 1 (Exclusion Restriction). Z is an h ×1 vector of instrumental variable which includes X

in the outcome model as subvector, i.e. there exists an additional ex

A. 2 (Conditional Mean Restriction). E(ε|z) = 0.

The conditional mean independence is a weaker assumption than independence of

ε from z, which is flexible in providing some form of heteroskedasticity from time-varying

shocks(Das 2005[4]). Also note that the restriction is conditioned on Zi t ∀t = 1,2, ...,T .

Under usual index assumption, p(Zi t , Z̄i = E [T |Zi t , Z̄ ] = E [T |Zi tγ, Z̄κ] = E [T |V2i t ,Vbi ] =
p(Zi t , Z̄i ), which implies the conditional mean independence of ε from the propensity

score, i.e. E(ε|p) = 0.

A. 3 (Exogeneity of time-varying error). Z ⊥ η, which implies p ⊥ η.
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The outcome model can be rewritten as:

Yi t = F (Xi tβ, ai ,Ti t )+εi t

= F (V1i t , f (Vai )+ηi ,Ti t )+εi t

=
∫
Ω

F (V1i t , f (Vai )+ηi ,Ti t )dF (ηi |V1i t ,Vai ,Ti t )+ [F (V1i t , f (Vai )+ηi ,Ti t )

−
∫
Ω

F (V1i t , f (Vai )+ηi ,Ti t )dF (ηi )|V1i t ,Vai ,Ti t ]+εi t

= E(F (V1i t , f (V ai )+ηi ,Ti t )|V1i t ,Vai ,Ti t )+F (V1i t , f (Vai )+ηi ,Ti t )

−E(F (V1i t , f (V ai )+ηi ,Ti t )|V1i t ,Vai ,Ti t )+εi t

=G(V1i t ,Vai ,Ti t )+δi t

(2.11)

where the new error termδi t = [F (V1i t , f (Vai )+ηi ,Ti t )−E(F (V1i t , f (V ai )+ηi ,Ti t )|V1i t ,Vai ,Ti t )+
εi t . Based on Assumption A.1-A.3, conditional mean independence applies to the new er-

ror term: E(δi t |p) = 0. Substituting (2.10) into the condition yields:

E(Y |p) = E [G(T )|p] (2.12)

Therefore, in semiparametric setting, the above argument suggests minimizing an objec-

tive function, an SLS estimation approach proposed in Ichimura (1993 [7]), exploiting the

discrete nature of treatment variable.

S(β,α) = E {[(Y −E(Y |V1,Va ,Pi t )]2} = 0 (2.13)

This model is hence specified as a triple-index semiparametric model, where (V1i t ,Vai ,P )

are the three indexes. An estimated treatment probability P̂ will be used to replace P . Since

P is an index with stand-along variable, in practice, only two sets of parameters (β,α) will

be estimated. Additional index assumption is presented for identification.

A. 4 (Existence of time-varying variable). ∃X1i t , such that for some t = j ,k, X1i j 6= X1i k . At

least one variable in X is varying across time periods.

In usual semiparametric model with more than one indices, standard assumption is

the existence of one distinct variable in each index. Nevertheless, due to the nature of in-

dices in our model specification, Xi t in index V1i t and X̄i in index Va will contain a distinct

variable as long as there exist 1 variable X1i t in the dataset, which indeed changed through

time. With time-varying variable, X1i t 6= X̄i , which will serve as the excluded variable for

each index. In empirical application, this requires to include at least one variable which is
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changing over time, such as income, age, in the individual heterogeneity specification.

3. ESTIMATION

The key parameter in estimation is the marginal treatment effect. To begin with, rewrite the

outcome model using a potential outcome framework. Suppose Y1, Y0 are the outcomes

when treatment Ti t is 1 or 0 respectively.

Yi t = Y1i t Ti t +Y0i t (1−Ti t )

= (Y1i t −Y0i t )Ti t +Y0i t

(3.1)

where Y1i t = F (V1i t , ai ,Ti t = 1)+εi t and Y0i t = F (V1i t , ai ,Ti t = 0)+εi t . Hence, the outcome

equation reduces down to:

Yi t = [F (V1i t , ai ,Ti t = 1)−F (V1i t , ai ,Ti t = 0)]Ti t +F (V1i t , ai ,Ti t = 0)+εi t

= [F (V1i t , f (Vai )+ηi ,Ti t = 1)−F (V1i t , f (Vai )+ηi ,Ti t = 0)]Ti t +F (V1i t , f (V ai )+ηi ,Ti t = 0)+εi t

= M(V1i t , f (Vai )+ηi )∗Ti t +B(V1i t , f (Vai )+ηi )+εi t

(3.2)

The individual marginal effect for individual i at time t is M(V1i t , f (Vai )+ ηi ). Since ηi

cannot be separately identified from the main model, the object of interest for estimating

marginal treatment effect will be:

MT E =
∫
Ω

M(V1i t ,Vai +ηi )dF (ηi )

=
∫
Ω

M(V1i t ,Vai +ηi )dF (ηi |V1i t ,Vai )

= E [M(V1i t ,Vai )]

≡ M̄(V1i t ,Vai )

(3.3)

In this paper, we propose to use a two-step method to estimate the average marginal

effect: (1) The index parameters in V1i t and Vai will first be estimated consistently from the

main outcome model using 2- stage semiparametric least square method (SLS). (2) Based

on the estimated indexes, the average marginal effect can be derived using a localized 2SLS

approach. Detailed estimation strategy is provided in sessions below.
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3.1. ESTIMATING INDEX PARAMTERS

As proposed in Section II, index parameters will be obtain by minimizing an objective func-

tion:

S(β,α) = E {[(Y −E(Y |V1i t ,Vai ,Pi t )]2} = 0 (3.4)

In sample analog of S(β,α), we minimize:

S(β,α) = 1

T ×N

N×T∑
i=1

{[(Y − Ê(Y |V1i t ,Vai ,Pi t )]2} (3.5)

where Ê(Y |V1i t ,Vai ,Pi t ) is the kernel estimator of true expectation E(Y |V1i t ,Vai ,Pi t ), which

is given by:

Ê(Y |V1i t ,Vai ,Pi t ) =
∑

i 6= j

∑
t yi t

{
1

h1
k
(

v1i t−V1 j t

h1

)
∗ 1

h2
k
(

vai−Va j

h2

)
∗ 1

h3
k
(

Pi t−P j t

h3

)}
∑

i 6= j

∑
t

1
h1

k
(

v1i t−V1 j t

h1

)
∗ 1

h2
k
(

vai−Va j

h2

)
∗ 1

h3
k
(

Pi t−P j t

h3

) (3.6)

Note that the propensity score P is unobserved and needs to be estimated.Recall from

Section II, Pi t ≡ E(Ti t |Zi t , Z̄i ) = E(Ti t |V2i t ,Vbi ), under index assumption. A semiparamet-

ric binary response model with double-index is estimated here using maximum likelihood

method to recover the propensity score (Klein 1993,2002 [12],[11]). The estimated propen-

sity P̂i t will replace Pi t in actual estimation process, which constitute a semiparametric

version of 2SLS.

The above method is conducted by pooling observations from all time period t =
1, ...,T . Alternatively, we can obtain the parameter by jointly minimizing the objective func-

tion in each period. For a particular period,

St (β,α) = 1

N

N∑
i=1

{[(Yi t − Ê(Yi t |V1i t ,Vai ,Pi t )]2} (3.7)

where (Ê |V1i t ,Vai ,Pi t ) is estimated data only in period t , whereas in pooling method all

data are used in kernel estimation. Weighting matrix can be imposed on each period’s con-

dition, which is beneficial under heteroskedasticity of error term across time periods.

11



3.2. ESTIMATING MARGINAL EFFECT

Replacing the marginal effect function with its mean, the outcome model is equivalent to:

Yi t = E [M(V1i t ,Vai )]∗Ti t +E [B(V1i t ,Vai )]+ [M(V1i t , f (V ai )+ηi )−E [M(V1i t ,Vai )]∗Ti t

+ [B(V1i t , f (V ai )+ηi )−E [B(V1i t ,Vai )]]+εi t

= E [M(V1i t ,Vai )]∗Ti t +E [B(V̂1i t ,Vai )]+ξi t

= M̄(V1i t ,Vai )∗Ti t + B̄(V1i t ,Vai )+ξi t

(3.8)

where ξi t is the sum of εi t and the residuals from demeaning.

The estimation strategy is using localized two-stage-least-square. Using only observations

(V1i t ,Vai ) in a neighborhood of (V1 j t ,Va j ), we can develop a local 2SLS estimator for M̄(V1 j t ,Va j )

and B̄(V1 j t ,Va j ) by replacing regressor Ti t by its conditional expectation Pi t , which is es-

timated from above session. Denote Ri t = [Pi t 1] and ME j t = [M̄(V1 j t ,Va j ) B̄(V1i t ,Vai )].

Denote ∆i j = Ri t MEi t −Ri t ME j t . The localized model can be written as:

Y j t = Ri t ME j t +∆i j +ξi t (3.9)

The local 2SLS estimator can be calculated as:

ˆME j t = [R ′DN (V1 j t ,Va j )R]−1R ′DN (V1 j t ,Va j )Y (3.10)

where the diagonal matrix DN (V1 j t ,Va j ) represents the weights for localization. To be spe-

cific:

DN (V1 j t ,Va j ) = di ag

{
1

h
k
(v1 j t −V1i t

h

)
∗ 1

h
k
(va j −Vai

h

)}
(3.11)

The kernel function imposes heavy weight on observations close to (V1 j t ,Va j ), which serves

as the localization device in estimation. Through this process, the estimated marginal ef-

fect will be unbiased because the conditional mean of error component is zero.

E [∆i t +ξi t |Pi t ] = E(∆i j |Pi t )+E
[{

M(V1i t ,Vai ,ηi )−E [M(Vi t ,Vai )]
}∗Ti t

∣∣∣Pi t

]
+E

[
B(V2i t ,Vai ,ηi )−E [B(V1i t ,Vai )]

∣∣∣Pi t

]
+E [εi t |Pi t ]

= 0

(3.12)

The kernel function imposes heavy weight on observations close to (V1 j t ,Va j ), which
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serves as the localization device in estimation. Through this process, the estimated marginal

effect will consistent because the conditional mean of error component is zero.

Using the estimated index V̂1i t ,V̂ai , and estimated conditional propensity score P̂ ob-

tained from first-stage estimation, we can obtain the recover the marginal effect function

from localized procedure.

After obtaining the marginal effect at every observation point of (V̂1i t ,V̂ai ), follow

Klein and Shen [2015 [10]], we summarize this information by quantile marginal effect.

Let tq j as an indicator for a particular variable of interest X j k being in quantile q . Define

population quantile marginal effect as:

M̄q j =
E [tq j M̄(V1 j t ,Va j )]

E(tq j )
(3.13)

The sample analog of quantile marginal effect can be presented by:

M̂q j =
∑N

j=1 t̂q j M̂(V̂ j t ,V̂a j )∑N
j=1 t̂q j

(3.14)

4. LARGE SAMPLE THEORY

4.1. DEFINITIONS

Definitions and notations are used in developing asymptotic theories are provided here.

D. 1. Treatment Probability.

Denote Pi t ≡ E(Ti t |Zi t , Z̄i ) = E(Ti t |Zi tγ, Z̄iκ) = E [Ti t |V2i t (γ),Vbi (κ)] under index assump-

tion. The estimated conditional treatment probability is denoted as P̂i t = P̂i t ((V2i t (γ),Vbi (κ))) =
Ê [Ti t |V2i t (γ),Vbi (κ)], which is given by:

Ê(P |V2i t ,Vbi ) =
∑

i 6= j

∑
t Ti t

{
1
h k

(
v2i t−V2 j t

h

)
∗ 1

h k
(

vbi−Vb j

h

)
∗

}
∑

i 6= j

∑
t

{
1
h k

(
v2i t−V2 j t

h

)
∗ 1

h k
(

vbi−Vb j

h

)
∗

} (4.1)

D. 2. Kernel.

Assume the total number of indices is m, denoted as v1, v2, ..., vm . Define kernel K ≡∏m
1

1
h k

(
vi m−V j m

h

)
,

where k(·) is a symmetric density with bounded
∫

z2k(z)d z and h =O(N−r ).

D. 3. Trimming

Denote λ as quantile fraction and W as a vector of variables and q(λ) is the population

13



quantile vector for λth quantile. Define sample trimming function as an indicator function

representing whether Wi is contained in the specified quantile:

t̂i (q̂) ≡ 1{q̂(λ1) <Wi < q̂(λ1)}

This trimming function can be used to represent trimming on index as well when Wi de-

notes estimated indices.

4.2. LARGE SAMPLE RESULTS

Theorem 1. Consistency.

Denote θ = (β,α), all parameters in outcome model, with θ̂ as the estimator which mini-

mizes (3.5).

Under Assumption (A.1)-(A.5) and definition (D.1)-(D.3):

θ̂
p→ θ0

Proof. (Here the outline of proof will be provided. For intermediate result and lemma, one

can refer to appendix for detail)

The main proof strategy is as follows. Recall from estimation, θ̂ minimizes the objective

function Ŝ(θ) given as:

θ̂ = (β̂, α̂) = argmin
θ

Ŝ(θ, P̂ ) = argmin
θ

1

T ×N

N×T∑
i=1

{[Y − Ê(Y |V1i t ,Vai , P̂i t )]2} (4.2)

We can further establish a uniform convergence result:

sup
θ

|Ŝ(θ, P̂ )−E [S(θ)]| p→ 0 (4.3)

If the uniform limit of the moment condition is uniquely minimized at θ0, it follows straightly

that: θ̂
p→ θ0.

For uniform convergence of Ŝ(θ), the above upper bound can be written as three pieces:

A+B+C

sup
θ

|Ŝ(θ, P̂ )− Ŝ(θ,P )|+ sup
θ

|Ŝ(θ,P )−S(θ,P )|+ sup
θ

|S(θ)−E [S(θ,P )]| (4.4)

The last piece C goes through straight forwardly because i.i.d. sample mean converges uni-
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formly to its expectation.(Amemiya 1984 [2], Klein 1993[12]). Therefore, piece C is Op (1).

For second piece B, there is no generated regressor P̂ . The difference of S(θ,P ) from Ŝ(θ,P )

is that it uses the true expectation instead of estimated Ê . Note that |Ê −E | = O(N−1/2h−3)

with three indices. It will converge faster than root-N if r < 1/6. With S(θ,P ) a function of

E , the uniform convergence result follows directly if r < 1/6.

The only piece left unproved is piece A with generated regressor P̂ . With supγ,κ |P̂ −P | =
Op (N−1/2h−2) when estimated under specification of two indices. Perform a taylor series

expansion on Ŝ(θ, P̂ ) on P yields:

Ŝ(P̂ ) = Ŝ(P )+ Ŝ′(P+)(P̂ −P ) (4.5)

Therefore, Ŝ(P̂ ) − Ŝ(P ) = Ŝ′(P+)(P̂ − P ). Since supγ,κ |P+ − P | p→ 0 , and Ŝ′(P ) = Ĝ(P ) =
1

N∗T

∑
(Y −Ê)∂Ê

∂P , which converges to the true gradient. Following argument similar to Klein

(2010)[9], we can show that supθ |Ŝ(θ, P̂ )− Ŝ(θ,P )| p→ P . Next step is to show that θ0 is a

unique minimizer of E(S(θ,P )). First the expectation can be written as:

E [S(θ)] = E {
N T∑
i=1

[Yi t −Ei t (θ0)+Ei t (θ0)−Ei t (θ]2}

= E {
N T∑
i=1

[[Yi t −Ei t (θ0)]2 + [Ei t (θ0)−Ei t (θ)]2]+2[Yi t −Ei t (θ0)]∗ [Ei t (θ0)−Ei t (θ)]}]

= E
{
E {

N T∑
i=1

[[Yi t −Ei t (θ0)]2 + [Ei t (θ0)−Ei t (θ)]2 +2[Yi t −Ei t (θ0)]∗ [Ei t (θ0)−Ei t (θ)]]}|Xi tβ, X̄γ,P
}

= E
{
E {

N T∑
i=1

[[δi t ]2 + [Ei t (θ0)−Ei t (θ)]2 +2[δi t ]∗ [Ei t (θ0)−Ei t (θ)]]}|Xi tβ, X̄γ,P
}

= E
{
E {

N T∑
i=1

[Ei t (θ0)−Ei t (θ)]2}|Xi tβ, X̄γ,P
}

(4.6)

The last step goes through due to conditional mean independence assumption of the in-

strumental variable P . Hence, for each observation i t , θ0 makes Ei t (θ0)−Ei t (θ) = 0, which

shows that θ0 is an minimizer of E [S(θ)]. Uniqueness of solution relies on index assump-

tion can shown by similar argument from Ichimura et.al (1991[8]).

Theorem 2. Normality Under Assumption (A.1)-(A.5) and definition (D.1)-(D.3):

p
N (θ̂−θ0)

d→W ∼ N (0,Σ)
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where

Σ≡ H−1
0 E [

p
NG0G ′

0

p
N ]H−1

0

Gradient G0 ≡ E [∇θS(θ00 )]

Hessian H0 ≡ E [∇θG(θ00 )]

Proof. Starting with the first-order condition (F.O.C) for objective function Ŝ(θ,P ),denote:

Ĝ(θ̂) = 1

N T

N T∑
i=1

(Yi t − Êi t )
∂Êi t

∂θ
. (4.7)

Using Taylor Expansion on true parameter θ0, and θ+ ∈ (θ̂,θ0),as an intermediate point, the

above gradient can be written as:

Ĝ(θ̂) = Ĝ(θ0)+ Ĥ(θ+)(θ̂−θ0) (4.8)

where ˆH(θ) ≡∇t het aĜ(θ), and it follows that:

p
N (θ̂−θ0) =−H−1(θ+)

p
NĜ(θ0) (4.9)

As outline of a proof strategy, it will be conducted in the following step: (Work in Progress)

• supθ |Ĥ(θ)−E(H(θ))| p→ 0

• θ+
p→ θ0, which follows that H−1(θ+)

p→ E(H(θ0)) ≡ H0

• For
p

NĜ(θ0) =p
N 1

N T

∑N T
i=1(Yi t−Êi t )∂

ˆEi t
∂θ

, the proof strategy is by showing the conver-

gence of the gradient function to the true function without estimated components.

With the establishment of such argument and bias reduction mechanism from Klein

and Shen[2015[10]], asymptotic normality will follow from standard central limit the-

orem.

Theorem 3. Properties of Quantile Marginal Treatment Effect Under Assumption (A.1)-

(A.5) and definition (D.1)-(D.3): quantile marginal effect is consistent and asymptotically

normal.

M̂q
p→ Mq

p
N (M̂q −Mq )

d→W ∼ N (0,Ω)
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5. MONTE CARLO RESULT

5.1. EXPLORE FORMS OF F-FUNCTION

In the first Monte Carlo study, I use different specification of outcome function to explore

the estimation method for indexes. The general structure of model is as follow:

T = 1{g (V2i t ,bi ) > ui t }

= 1{V2i t +bi > ui t }

= 1{Zi tγ+ Z̄iθ+µi > ui t }

(5.1)

Yi t = F (V1i t , ai ,Ti t )+εi t

= F (Xi tβ, f (X̄iα)+ηi ,Ti t )+εi t

(5.2)

In this subsection, data is generated to satisfy the following:

1. Error terms in both treatment and outcome models are homoskedastic and standard

normally distributed. ui t and εi t are correlated.

2. X1i ,X2i and X3i are all normally distributed with expectation 0 and standard devi-

ation 1. X1i is correlated with X2i . X3i is generated to be independent of X1i and

X2i .

3. Serial correlation: X1i t is correlated with X1i s . Same for X2 and X3.

4. Zi t = [X1i t X2i t X3i t ]. Xi t = [X1i t X2i t ]

Four variation in specification of outcome model can be explored:

1. Linear Marginal Effect in V1i t and ai :

F (V1i t , ai ,Ti t ) = 2∗V1i t ∗Ti t +bi ∗Ti t

2. Non-linear Marginal Effect in V2i t and Vb :

F (V1i t , ai ,Ti t ) = exp{2V1i t +ai }∗Ti t + (V1i t +0.26∗ai )

3. Quadratic in index V1i t Vai :

F (V1i t ,Vai ,Ti t ) =V 2
1i t ∗Ti t +a2

i ∗Ti t

Using bias correction, Sample size N = 2000 and repetition of i = 100. Window size r =
1/11. For each functional specification, I reported the estimates after bias correction.
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Specification Parameter True Value Mean Standard Deviation Median

(1.1) β 2 2.26 0.12 2.25

(1.1) α 1 0.95 0.114 0.95

(1.2) β 2 2.16 0.15 2.16

(1.2) α 1 0.91 0.37 0.87

(1.3) β 2 2.12 0.13 2.12

(1.3) α 1 0.96 0.27 0.96

Note: Here I set individual fixed effect bi =V 2
bi +ηi ; Result is similar if bi =Vbi +ηi .

5.2. SEPERATELY ESTIMATE EACH TIME PERIOD

Due to the fact that Xi t and X̄i can be highly correlated in practice if the variation in time

dimension is limited, here we use a Monte-carlo study to compare estimation method of

pooling data with seperating estimation, which is given by (3.7). The following study uses

design (1) above with bias correction. The result confirms the linear issue in index variable

specification. As the number of period increases, the estimation gets closer to the true

value with lower standard devidation.

Period Parameter True Value Mean Standard Deviation Median

2 β 2 2.22 0.12 2.25

2 α 2 1.20 0.24 1.15

3 β 1 2.17 0.14 2.17

3 α 2 1.15 0.13 1.15

4 β 2 2.06 0.07 2.06

4 α 1 1.22 0.10 1.22

5 β 2 2.02 0.09 2.02

5 α 2 1.14 0.16 1.34

6 β 2 1.97 0.09 1.97

6 α 2 1.41 0.18 1.41
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6. EMPIRICAL ANALYSIS FOR CHINESE PUBLIC HEALTH

INSURANCE

6.1. PROGRAM BACKGROUND

The URBMI is a central government directed and local government administered public

insurance program, which is similar to the institutional setting of Medicaid program in the

US to some extent. The role of Chinese central government in URBMI program includes:

initiating the program by offering fiscal support, mandating the implementation by pass-

ing a series of legislation, and supervising the details by providing policy guidelines. The

detailed design and implementation of URBMI policy, however, are up to the city govern-

ments. Therefore, URBMI policy varies considerably across different regions.

As for eligibility and enrollment, URBMI is a voluntary-based program, targeting el-

derly, children, adults with disability and other non-working urban residents. In most of

the cities, enrollment is individual-based, with several exception of household-based re-

quirement to avoid adverse selection. For program financing, URBMI is jointly financed

by individual and governments. The average annual cost of insurance is around 250 RMB

($40 USD) for adults, and 120 RMB ($19 USD) for children. Individual contributes less than

50% of the insurance premium while central government and local government share the

rest of funding. To ensure program implementation, central government subsidizes at least

80 RMB ($12 USD) per enrollee annually, with extra funding for enrollees with disability or

under poverty line. Local level subsidy varies across region but a minimum contribution is

required by central government.

Benefit package varies largely across cities in terms of reimbursement rate, payment

deductible and reimbursement cap. At the beginning stage, URBMI was only designed to

pay for inpatient treatment and outpatient treatment of severe illness such as chronic dis-

ease. As the program developed, a much broader range of medical services are included in

the insurance coverage, including preventative care. On average, inpatient reimbursement

rate is at least 45%, which differs across different levels of medical facilities. The reimburse-

ment is less generous for treatment received in higher-level medical provider. For instance,

if a patient is treated in community clinic, the reimbursement rate can be as high as 90%,

whereas the cost can only be covered by 45% in city-level big hospital. Moreover, the reim-

bursement ceiling is set to be 4 6 times the average annual income of urban workers, which

is about 25,000-150,000 RMB ($4,100 – $24,600 USD).

19



6.2. DATA

6.2.1. INDIVIDUAL LEVEL DATA

The dataset used in this paper is the data from Chinese Health and Nutrition Survey (CHNS),

which is an ongoing, open cohort survey project conducted by Carolina Population Center

at the University of North Carolina at Chapel Hill and the National Institute of Nutrition and

Food Safety at the Chinese Center for Disease Control and Prevention. The survey collects

rich information on individual and household’ s demographic and socioeconomic charac-

teristics, as well as health and nutrition status of both urban and rural population. It also

carried out community survey to provide information on community facilities, healthcare

provision and public insurance enrollment etc.

For the purpose of my research, I select the data from CHNS dataset in the following

manner. First of all, only the last three waves of data, i.e. wave 2006, 2009 and 2011, are se-

lected for analysis. Year 2006 is the year right before URBMI was introduced. Including this

wave provides a baseline condition before treatment. Wave 2009 and 2011 data provides

the variation after treatment.

The eligible individuals in the survey sample are selected to be policy target popula-

tion (children under 18, elders above 55 or 60 depending on gender, college student and

unemployed adult) who are registered in urban status in Chinese Household Registration

System (“Hukou”). The eligible sample contians 4,534 observations in 2006, 4,623 observa-

tions in 2009 and 7,279 observations in 2011. Noticing that the sample expanded in 2011

due to an expansion in survey size. In addition to eligible sample, various subsamples are

also defined as in Table2 including policy-target sample, elderly sample and children sam-

ple. In the empirical analysis, I will mainly use the eligible sample as my study sample,

which will be referred to as full sample below. Detail description of different samples used

in this paper are provided in Figure A.1.

The key variable of interest is enrollment status into URBMI. By default, in wave2006,

no observations were enrolled in URBMI. The trend of enrollment rate in various samples

is presented in Figure A.2. After it is first launched in 2007, the enrollment rate among dif-

ferent subsamples exhibits a rapidly increasing trend. The average enrollment rate reached

over 30% for all sample, among which sample of children under 18 has the highest enroll-

ment rate of 54% in 2011. The changing enrollment status provides a decent size of varia-

tion to utilize in identification.

Other explanatory variables include observable individual, household and commu-
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nity characteristics that may potentially affect the outcome variables. There are poten-

tially two sets of controlled variables. For the individual and household level controls, I in-

clude basic demographic information including gender, marital status, education level, in-

dividual income, as well as household characteristics including household size, per capita

household income. I also controls for individual’s insurance status on other competing

public or private insurance program, which includes commercial medical insurance, UEBMI

program, rural cooperative public insurance and other medical subsidy by the government.

The second set of controls is community characteristics.

Summary statistics of selected demographic characteristics and insurance status are

presented in Table A.1. The first column summarizes the mean and standard deviation of

various explanatory variables of the full sample. Column (2) –(5) presents the summary

statistics by waves. For wave 2009 and 2011, the comparisons between URBMI enrollee

and non-enrollee are also presented, along with test result for difference in sample mean.

As indicated by statistics, the characteristics of enrollees significantly differ from those who

are not enrolled. Enrollees are more likely to be female, married and less educated. More-

over, URBMI enrollees have significantly lower household incomes. As for the medical in-

surance status, enrollees in URBMI are less likely to purchase commercial insurance and

other public medical insurance. The differential characteristics for insured and uninsured

group indicate the existence of self-selection into the URBMI, which may cause biased es-

timation.

6.2.2. CITY-LEVEL DATA: URBMI INSURANCE POLICY

In addition to CHNS individual level dataset, city-level insurance policy variables of URBMI

are also used in empirical analysis as instrumental variables. Each city determines its

URBMI package for its residents. The policy variables include insurance premium, reim-

bursement rate for different level of medical providers and treatment type, insurance de-

ductible for different treatment as well as lump-sum reimbursement cap. Within a city, the

insurance policy varies in four categories of subpopulation, i.e. elderly, children, college

students and adults. In addition, the policy variables are changing from year to year. These

policy variables can only be manually collected from local government’s legal documents.

Table A.2 reports the summary statistics of URBMI insurance premium and reim-

bursement cap. In particular the mean of premium and cap is calculated for four groups

of urban population, including elderly, children, students and adults. In general, URBMI

policy is the most generous to children and college students, with lower enrollment cost
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and higher reimbursement cap. Moreover, from 2009 to 2011, the average reimbursement

cap largely increased for all subpopulation. However, the regional pattern is harder to gen-

eralize. Comparing higher and lower income cities within a province, higher income cities

tend to charge higher premium for enrollees but on the other hand, set a more generous

reimbursement policy. As for geographical region, cities in Eastern China shows a much

higher generosity in reimbursement cap, while middle and western cities have relatively

similar polity despite the fact that mid-China is more economically advanced than west-

ern part. Hence, the policy summary informally indicates that URBMI policy is somewhat

exogenous to a city’s characteristics.

6.3. PARAMETRIC RESULTS

In this section, the estimation result for the effect of URBMI on healthcare utilization and

health outcome variables will be presented. Full sample, i.e. the URBMI eligible sample,

is used in estimation throughout this section. For each dependent variable, four model

specifications will be analyzed: 1) pooled OLS model for comparison purpose; 2) individ-

ual fixed-effect model as the baseline model; 3) fixed-effect 2SLS model with insurance

premium as IV; 4)Fixed-effect 3-stage model with insurance premium IV. Throughout this

section, only the marginal effect of primary interest are reported and discussed.

Table A.3 presents the estimated coefficient/marginal effect on variable of interest,

URBMI enrollment status. I further categorize healthcare utilization into four categories:

general healthcare utilization; intensity of treatment; financial burden and treatment for

chronic disease.

For Category A: general healthcare choice, it mainly measures the probability of using

medical service and general quality of service selected. In particular, it measures the prob-

ability of visiting formal medical provider, probability of seeking preventative care, and the

choice of medical provider’s type. Moreover, these variables are decision variables mainly

based on individual’s own choice, with less intervention from medical provider. As result,

URBMI may have more direct impact on these variables. The regression results from Table6

show that under pooled OLS model, URBMI enrollment shows significant effect on all of

the four variables. URBMI enrollment increases the probability of seeking formal health-

care and the probability of seeking preventative care. It also induces enrollees to choose

higher quality medical provider, by increasing the probability of visiting city-level hospital

and decreasing that of community-level hospital. However, after adding individual fixed

effect, URBMI only significantly influence the choice of preventative care. The coefficients
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of URBMI for the remaining three variables decrease in magnitude and lose significance.

The parity of estimation result between pooled OLS and fixed effect model further con-

firms the existence of unobserved time invariant factors in error term that are correlated

with variable URBMI. Under instrumental variable approach with individual fixed-effect,

the impact of URBMI is significant for both the choice of seeking formal healthcare and

the choice of preventative care. The magnitude of coefficients also largely increases. De-

pending on the specific IV model, an enrollment into URBMI is estimated to increase the

probability of visiting formal healthcare by 17-21 percentage points, which is higher than

the findings in Liu et al. (2012). Meanwhile, enrolling into URBMI will raise the chance of

seeking preventative care by 3.8-4.2 percentage points.

Comparing results from different model specification, one thing worth discussing is

the sign of endogeneity bias caused by different source of unobserved factors. Noticing

that by adding individual fixed-effect into the model, it decreases the size of URBMI ef-

fect, which means that time invariant factors in the model tend to bias up the coefficient.

However, by using instruments that further adjust for bias from other factors, the magni-

tude of effect increases largely, meaning that other unobserved factors are likely to have

bias down the coefficient. The channel through which these different factors affect the re-

sult should be examined with care. One possible explanation is provided as follow: The

source of time invariant individual factors are likely to be values towards health, which is

arguably persistent across time, while the time varying factors are more likely to capture

individual’s behavioral characteristics, which are considered more easily changing, espe-

cially in a fast developing environment as China. For time invariant factors, a person who

values health more is more likely to purchase URBMI, while at the same time more likely to

utilize healthcare service. Therefore, this positive chain of correlation is considered to bias

up the coefficient.. As for time varying behavioral factors, it is suspected that an individual

who enrolled in URBMI is more possible to engage in healthier behavior and therefore has

less demand for healthcare utilization due to better health. This chain of connection tends

to bias down the effect of URBMI. Comparing the magnitude of bias, time varying factors

seems to play a more significant role in the model. However, this is only a possible intu-

ition for explaining the comparative result. To further confirm the underlying mechanism,

a more rigorous identification strategy or even a behavioral model should be used in the

context.

For category B, it measures the intensity of treatment received. In other words, it pro-

vides information on not only whether the individual use healthcare, but also how much

quantity or quality of medical service is used. Referring to Table6, after adjusting for endo-
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geneity bias, URBMI enrollment only shows statistically significant effect on inpatient days,

which is a small decrease for about 0.3 day. The sign of estimated coefficient is counter intu-

itive in some sense. However, the estimation on inpatient treatment can be imprecise due

to the limited observation number in the sample. Only about 10% of individuals who seek

healthcare service will received inpatient treatment, which limits the variation in observa-

tion. The effect of URBMI on total expenditure is estimated to be a 3 5% positive increase,

but with a too large standard deviation to be considered statistically significant. In general,

URBMI shows no noticeable impact on this set of total utilization variables. Nevertheless,

it should be taken into account that the choice for treatment is a joint decision between

both the patient and the medical provider, which is beyond the control of an individual. As

a national insurance program, the size of URBMI is very likely to induce supply side change

from hospitals and doctors in terms of how they treat patients enrolled in URBMI. Without

further exploration of supply-side response, it is difficult to draw a definite conclusion on

the effect of URBMI on total utilization of healthcare. In addition to the general measure-

ment of utilization, I also examine treatment usage for individuals with chronic diseases,

as shown in Category D. In pooled OLS model, URBMI enrollment indicates a significantly

higher adoption rate of treatment for both high blood pressure and diabetes. However, af-

ter adjusting for endogeneity bias, the effect disappears and even become negative in some

case.

Table A.4 presents the regression results on selected physical examination outcomes.

URBMI enrollment significantly decreases the probability of getting high blood pressure

test result. In particular, after correcting for bias, enrolling in URBMI is associated with

about 16-percentage-points less chance of showing high blood pressure symptoms. The

coefficient is considerably large in magnitude. Except for high blood pressure, URBMI en-

rollment does not impose sizable effect on other examination outcome variables. However,

the result is consistent with expectation due to the following two reasons. Firstly, physi-

cal examination result is only available for 2009, which is only 2 years after the launce of

URBMI at maximum . The effective period of URBMI is still too short for significant impact

to take place. Secondly, as discussed in Section 4.1.3, the physical examination conducted

in the survey is in the most basic version. The symptoms checked in the examination may

not be prevailing in urban area, such as goiter. Hence, there are vary limited variation in

the sample to provide a significant coefficient. However, the signs of coefficient for all these

variables are negative, which gives some information about the direction of URBMI effect.

The second set of health outcome variables are self-reported, which are presented

below in Table A.5. Overall wellbeing is a general self-rating for one’s condition, whose pos-
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sible answers are multi-categorical but grouped into two categories, positive or negative,

for simplification. Under the instrumental variable model, URBMI enrollment raised the

probability of a positive wellbeing rating by about 13 percentage points. The effect on psy-

chological wellbeing is even more significant. URBMI increases an individual’s chance of

feeling happy during the past year by more than 20% under IV model. This finding is con-

sistent with other literature on health insurance. The short-term effect of enrolling into

medical insurance includes increasing happiness (Finkelstein et al. 2012), although the

underlying mechanism of this effect has not been studied yet.

7. SEMIPARAMETRIC ESTIMATION RESULT ( WORK IN

PROGRESS)
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A. APPENDIX:TABLES AND FIGURES

A.1. SUMMARY STATISTICS

Figure A.1: Sample Definition and Sample Size

Figure A.2: Enrollment Rate in URBMI from 2006 to 2011
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Table A.2: Summary Statistics of URBMI Policy

Elderly Children Student Adult

Premium (in 1 RMB)

All Cities 140.45 38.25 47.58 218.49
All Cities 2009 132.09 32.5 52.87 210.82
All Cities 2011 148.58 39.29 39.6 229.75

High Income Cities 161.89 44.55 60.91 285.23
Low Income Cities 113.02 30.88 31.67 134.69

Eastern China 206.42 49.29 61.79 318.57
Mid-China 107.69 25.31 37.71 167.17

Western China 100.5 43.5 43.5 160.5

Reimbursement Cap (in 1,000 RMB)

All Cities 66.2 70.75 73.2 66.44
All Cities 2009 46.17 50.61 52.28 46.17
All Cities 2011 84.23 88.88 92.03 84.68

Provincial Capitals 86.9 91.3 95.95 87.35
Lower Income Cities 42.22 46.63 46.63 42.22

Eastern China 89.49 92.72 97.49 89.95
Mid-China 49.21 57.33 59.21 49.21

Western China 62.78 62.89 63 63.11
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Table A.3: Effect of URBMI on Healthcare Utilization

Model Pooled OLS Fixed Effect FE 2SLS FE 3-Stage IV

Category A: General Healthcare Choice

Seek formal medical service in past 4 weeks

0.0211 *** 0.0064 0.1766 0.2176 *
Obs=16,125 -0.008 -0.012 -0.082 -0.118

Visit city-level hospital in past 4 weeks

0.0633 ** -0.038 0.2911 0.0677
Obs=2,188 -0.03 -0.088 -0.28 -0.205

Visit community-level hospital in past 4 weeks

-0.11 *** -0.014 -0.122 0.0394
Obs=2,188 -0.032 -0.106 -0.338 -0.244

Seek preventative care in past 4 weeks

0.0135 ** 0.0257 *** 0.03868 ** 0.04205 *
Obs=16,125 -0.006 -0.01 -0.01716 -0.02418

Category B: Intensity of Utilization

Inpatient treatment in past 4 week?

0.0016 -0.00449 -0.15842 -0.19425
Obs=16,125 -0.003 -0.00514 -0.15598 -0.20237

Inpatient days in past 4 week

0.0255 -0.03568 -0.24989 ** -0.32601 *
Obs=16,125 -0.037 -0.06923 -0.12392 -0.17314

Ln (total medical expenditure+1)

0.1103 ** 0.01184 0.0329 0.05727
Obs=16,125 -0.046 -0.07631 -0.1366 -0.19057

Category C: Financial Burden from Healthcare Service

Ln (out-of-pocket expense+1)

-0.09675 ** -0.00638 -0.02281 -0.03324
Obs=16,125 -0.04342 -0.07285 -0.1304 -0.18193

Category D: Treatment for Chronic Disease

Receive high blood pressure treatment

0.0993 *** 0.029 0.0619 -0.032
Obs=1,221 -0.037 -0.095 -0.183 -0.165

Receive diabetes treatment
0.1153 * 0.1356 -0.294 -0.267

Obs=302 -0.066 -0.448 -0.496 -0.86
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Table A.4: Effect of URBMI on Physical Examination Outcomes

Model Pooled OLS Fixed Effect FE 2SLS FE 3-Stage IV

High Blood Pressure (wave=2006,2009)

-0.0302 * -0.0919 *** -0.1638 *** -0.15492 ***
Obs=8935 -0.0172 -0.031 -0.0619 -0.001

Obesity (wave=2006,2009)

-0.0236 -0.0422 -0.0368 -0.04568
Obs=8935 -0.0175 -0.0278 -0.0555 -0.06211

Goiter (wave=2006,2009)

6E-05 -0.0004 -0.0048 -0.00552
Obs=8344 -0.0013 -0.0021 -0.0042 -0.00463

Angular Stomatitis Symptom (wave=2006,2009)

0.0003 -0.0031 * -0.0011 -0.00274
Obs=8344 -0.0009 -0.0018 -0.0036 -0.004

Any symptoms (wave=2006,2009)

-0.0055 ** 0.0032 -0.007 -0.00894
Obs=8935 -0.0026 -0.0044 -0.0092 -0.01029
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Table A.5: Effect of URBMI on Self-reported Health Outcomes

Model Pooled OLS Fixed Effect FE 2SLS FE 3-Stage IV

Overall wellbeing for the past year (wave=2006,2009)

0.0046 -0.0235 0.1355 ** 0.1233 *
Obs=8935 -0.0158 -0.02736 -0.057 -0.0639

Happiness for the past year (wave=2006,2009)

0.05 *** 0.0547 ** 0.2088 *** 0.2853 ***
Obs=8935 -0.0154 -0.0273 -0.0568 -0.0643

Feeling sick during past 4 week (wave=2006,2009,2011)

-0.0171 *** -0.00771 0.0334 0.0345
Obs=16089 -0.0086 -0.0128 -0.0353 -0.0349

Have obvious symptoms during past 4 weeks (wave=2006,2009,2011)

-0.0372 *** 0.00054 0.0159 0.0064
Obs=16125 -0.0096 -0.0145 -0.0403 -0.0394

Suffering from chronic disease (wave=2006,2009)

0.0159 -0.0232 -0.0429 -0.0532
Obs=8935 -0.0132 -0.02031 -0.0424 -0.0473

B. APPENDIX: INDEX ASSUMPTION

To obtain the treatment effect, it would be useful to estimate the conditional mean of out-

come Yi t : (Note: Not sure whether I should condition on the individual heterogeneity as

well??)

E [Y |Xi t ,Ti t ,bi ] (B.1)

To estimate the conditional mean, it can be proceeded to estimate the outcome and treat-

ment model simultaneously by conditioning on all the indexes in the two models and re-

cover the index parameters, i.e. to estimate

E [Y |Xi t ,Ti t ,bi ] = E [Y |V1i t ,V2i t ,Vai ,Vbi ] (B.2)

To further simplify, it would be desirable to conduct a two-stage procedure to estimate

the treatment model first and replace true treatment variable by the treatment probabil-

ity (propensity score). If the following condition holds, the outcome estimation could be
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represented by a triple-index model instead of four indexes.

E [Y |V1i t ,V2i t ,Vai ,Vbi ] = E [Y |V2i t ,Vbi ,Ti t ] = E [Y |V2i t ,Vbi ,P (T |V1i t ,Vai )] (B.3)

where P (T |V1i t ,Vai is the conditional probability of treatment conditioned on the two in-

dexes assumed in the treatment model.

To verify the validity of the above conditions, it could be proceeded in several steps:

1. Treatment model:

a) Check E [T |Zi t , Zi s] = E [T |Zi t , Z̄ ]

b) Check E [T |Zi t , Z̄ ] = E [T |V1i t ,Vai ] = P [T = 1|V1i t ,Vai ]

2. Outcome model:

a) Check E [Y |Xi t ,Ti t ,bi ] = E [Y |Xi t , Xi s ,Ti t ,Ti s]

b) Check E [Y |Xi t , Xi s ,Ti t ] = E [Y |Xi t , X̄ ,Ti t ]

c) Check E [Y |Xi t , X̄ ,Ti t ] = E [Y |V1i t ,V2i t ,Vai ,Vbi ]

d) Check E [Y |V1i t ,V2i t ,Vai ,Vbi ] = E [Y |V2i t ,Vbi ,P (T |V1i t ,Vai )]

B.1. TREATMENT MODEL INDEX ASSUMPTION

For treatment model, the conditional mean can be rewritten as follow:

E [T |Zi t , Zi s] = Pr [T = 1|Zi t , Zi s]

= Pr [ui t < g (Zi tβ, ai )|Zi t , Zi s]

= Pr [ui t < g (Zi tβ, f (Z̄α)+εi )|Zi t , Zi s]

= fui t |Zi t ,Zi s (g (Zi tβ, f (Z̄α)))

(B.4)

Where fui t |Zi t ,Zi s is the conditional probability distribution function for error term ui t . We

can make additional assumptions on the distribution of error term to make the index as-

sumption go through. Assume that all variables in Zi t are exogenous to error ui t , which is

not an unreasonable assumptions to make because endogeneity in the treatment model is

not the focus of this paper. Under this assumption, the distribution of ui t is independent
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of Zi t , Zi s and Z̄ as well.

E [T |Zi t , Zi s] = Pr [T = 1|Zi t , Zi s]

= fui t |Zi t ,Zi s (g (Zi tβ, f (Z̄α)))

= fui t (g (Zi tβ, f (Z̄α)))

= fui t |Zi t ,Z̄ (g (Zi tβ, f (Z̄α)))

= E [T |Zi t , Z̄ ]

(B.5)

Next step is to verify the index assumption is valid here to summarize the information given

by Zi t and Z̄ , i.e. to check E [T |Zi t , Z̄ ] = E [T |Zi tβ, Z̄α] = E [T |V1i t ,Vai ], which follows by

regular semiparametric index assumption. As result, the conditional probability of treat-

ment can be represented by E [T |V1i t ,Vai ] = P [T = 1|V1i t ,Vai ]

B.2. OUTCOME MODEL INDEX ASSUMPTION

For the outcome model, the assumptions to validate steps (a)-(c) listed above will be similar

to those given in the treatment model. Here the key step is to check that the two-stage

method by plugging in the conditional probability of treatment is valid. The conditional

expectation of Yi t on all variable Zi t will be:

E(Yi t |Zi t , Zi s) = E(Yi t |Zi t , , Zi s ,Ti t = 1)Pr (T = 1|Zi t , Zi s)+E(Yi t |Zi t , Zi s ,Ti t = 0)Pr (T = 0|Zi t , Zi s)

= E(Yi t |Zi t , Zi s ,Ti t = 1)Pr (T = 1|Zi t , Zi s)+E(Yi t |Zi t , Zi s ,Ti t = 0)[1−Pr (T = 1|Zi t , Zi s)]

= Pr (T = 1|Zi t , Zi s)[E(Yi t |Zi t , Zi s ,Ti t = 1)−E(Yi t |Zi t , Zi s ,Ti t = 0)]+E(Yi t |Zi t , Zi s ,Ti t = 0)

(B.6)

where Ti t follows the same model above. The key is whether the conditional means E(Yi t |Zi t , Zi s ,Ti t =
1) and E(Yi t |Zi t , Zi s ,Ti t = 0) are functions of Pr (T |Zi t , Zi s). Take E(Yi t |Zi t , Zi s ,Ti t = 1) as
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example,

E(Yi t |Zi t , Zi s ,Ti t = 1)

=
∫
η

F (Xi t , f (X̄ )+ηi ,Ti t = 1)dF (η|Zi t , Zi s ,T = 1)+∫
ε
εi t f (ε|Zi t , Zi s ,Ti t = 1)dε

=
∫
η

F (Xi t , f (X̄ )+ηi ,Ti t = 1)dF (η)+∫
ε
εi t f (ε|Zi t , Zi s ,Ti t = 1)dε

(B.7)

The first term is a function of Pr (T |Zi t , Zi s) since Ti t can be presented as Pi t+residual. As

for, f (ε|Zi t , Zi s ,Ti t = 1), the conditional pdf for error term ε.

f (ε|Zi t , Zi s ,Ti t = 1) = f ε|Zi t , Z̄ ,Ti t = 1[By imposing assumption2 on error ε]

= f ε|Zi t , Z̄ , g (Z1i tβ, ai ) > ui t

=
∫ g (Zi tβ,ai )
−∞ f (ε,u|Zi t , Z̄ )duÎ g (Zi tβ,ai )

−∞ f (ε,u|Zi t , Z̄ )dεdu

=
∫ g (Zi tβ,ai )
−∞ f (ε,u|Zi t , Z̄ )du

Pr [ui t < g (Zi tβ, ai )|Zi t , Z̄ ]

=
∫ g (Zi tβ,ai )
−∞ f (ε,u|Zi t , Z̄ )du

Pr [T = 1|Zi t , Z̄ ]

(B.8)

Where f (ε,u|Zi t ) is the joint distribution of ε and u. Therefore, E(Yi t |Zi t , Zi s ,Ti t = 1) is also

a function of Pr [T = 1|Zi t , Z̄ ]. Similar argument holds for E(Yi t |Zi t , Zi s ,Ti t = 0). As result,

the conditional mean of Y can be written as a function of Pr [T = 1|Zi t , Z̄ ].

E(Yi t |Zi t , Zi s) = H(Pi t ) = E(Yi t |Pi t ) (B.9)

Therefore, the two-stage method for index estimation should go through.
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