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1 Introduction

In many product markets, innovation can lead to substantial quality changes from one point

in time to the next. Research on product innovation tends to emphasize demand responses

and consumer surplus. Going back to Hicks (1932) economists have recognized that market

demand not only responds to, but also drives innovation. Sometimes knows as “demand

pull”, the idea is that firms respond to consumer preferences by shifting resources towards

the development of products that meet potential demand (Schmookler, 1966; Scherer, 1982).

Research on demand pull has generally studied how market size or market structure affect

the speed of innovation (Finkelstein et al., 2004; Acemoglu and Linn, 2004; Goettler and

Gordon, 2011). In contrast, little work has studied demand pull in contexts where product

quality is multi-dimensional and where consumer preferences can therefore affect not only

the speed, but also the direction of innovation.

In this paper, we introduce an empirical framework to capture how innovation along mul-

tiple dimensions of quality is endogenous to aggregate consumer demand. Allowing multiple

dimensions of product quality means that new products can be better on one dimension

and worse along another. An example is new medicines that are more effective at curing

illness, but have harsher side effects. Our framework centers around estimating the multi-

dimensional empirical distribution of innovations, which is then embedded into a structural

model of dynamic demand. In the model, forward-looking consumers make choices after

forming expectations over potential future innovations. Optimal consumer choices are then

aggregated into market shares, which help to drive both the speed and the direction of

innovation by determining how new products are drawn from the empirical innovation dis-

tribution. In this sense, the model takes explicit account of demand externalities, which

arise since aggregate consumer behavior affects dynamic payoffs through its impact on in-

novation. We match our model to data on the realized path of innovations, product quality

and consumer choices over a long time horizon in a maturing product market: HIV drugs.

Our framework captures several layers of consumer uncertainty. First, consumers form

expectations over the qualities of the products available to them and become fully aware of

their qualities only after they have used a product at least once. Alternatively, consumers

may experiment with new technologies that are not yet on the market and may mark a

substantial improvement over existing products. But experimental technologies may also be

of dangerously low quality. In software, this is known as beta-testing ; in medicine, this is

done through participation in clinical trials. Second, consumers make decisions to maximize

their lifetime utility, accounting for how current-period choices affect their future utility.

Though not an important feature in some product markets, dynamics are crucial to under-
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standing choices in many instances, e.g., when goods are storable or have a lasting impact

on utility, as is the case with pharmaceuticals or medical treatments. Third, in a market

where substantial innovation is possible, consumers must form expectations over the path of

technology, effectively forecasting how product markets will evolve.

A key contribution of our framework is the manner in which we model consumers ex-

pectations over market evolution, in particular, the number and qualities of potential new

technologies. The observed path of product innovation is explicitly modeled as a single draw

from an underlying stochastic process. Consumers choosing among existing products are

tasked with forming expectations over this stochastic process, fully aware that aggregate

demand ultimately drives the path of innovation. In forming expectations, each consumer

also takes explicit account of how every other consumer likewise forecasts technological ad-

vancements when making decisions. Notice, each consumer’s choice behavior is therefore a

function of all consumers’ beliefs about future product markets.

By modeling innovation as a function of demand, we can assess how different policies,

through their impact on demand, can also influence the path of technological innovation.

For example, if we encourage consumers who are reluctant to try new products with un-

certain qualities, can we increase the likelihood of breakthroughs? Moreover, given demand

externalities, it is possible that a planner could solve the consumer coordination problem

wherein patients underuse products that could raise dynamic payoffs through their impact

on innovation.

We apply our framework to the market for HIV drugs. HIV is a medical condition that

reduces the ability of the immune system to fight off routine infections (a condition known

as AIDS).1 It reached epidemic proportions in several countries, including the U.S., starting

in 1984. HIV has reached a point where—at least in developed countries where access to

medication is widespread and subsidized—the condition is manageable and side effects of

medications are fairly mild. However, this was not always the case. In the early years of the

epidemic, available treatments were not only largely ineffective, but also had uncomfortable,

painful and even deadly side effects. Each year brought innovations that were incremental

at best. Indeed, as we will show, some new products were worse since they were more toxic

without being more effective. In the mid-nineties, a new set of treatments (collectively known

as HAART) was introduced, which effectively transformed HIV from a virtual death sentence

to a chronic condition.2 Within two years, the introduction of HAART reduced mortality

1AIDS stands for acquired immunodeficiency syndrome.
2HAART stands for highly active anti-retroviral treatment. There is no vaccine or cure for HIV or AIDS,

but HAART is the current standard treatment. In general, 1996 is marked as the year when two crucial
clinical guidelines that comprise HAART came to be commonly acknowledged. First, protease inhibitors
(made widely available towards the end of 1995) would be an effective HIV treatment. Second, several
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rates by over 80% among HIV+ men (Bhaskaran et al., 2008). HAART therefore marked a

clear departure from existing products in the market for HIV treatments. However, HAART

involved drugs that were highly toxic, leading to side effects that were often intolerable and

drove some people to avoid using them. In other words, HAART comprised treatments that

were better on some dimensions, but worse on others. Thereafter, a series of new drugs were

introduced, which were effective and had fewer side effects.

We use data on HIV+ men’s treatment decisions and health outcomes over approximately

20 years. The benefit of observing a long panel in the market for HIV drugs is that we can

watch the path of innovation unfold. Indeed, a number of breakthroughs have occurred since

the early, darker years of the AIDS epidemic. Since, we observe the same individuals over

time, the evolving market allows us to identify both endogenous innovation and consumer

preferences. In the model, consumers form expectations about the process underlying this

path. In our framework, we exploit the fact that we can observe consumer decisions over

time and the realized path of innovation to better understand how expectations were formed.

Ex post, we can observe that the path of technological innovation occurred in fits and spurts.

The introduction of HAART constitutes a key source of variation, which we exploit to

help identify our model. Indeed, the realized path of innovation includes fairly incremental

changes to drug qualities along with massive innovations that drastically altered the lives of

consumers with HIV. In our framework, large and drastic changes in the product market are

draws (albeit less likely ones) from the same underlying distribution that generates smaller,

incremental improvements.

We contribute to three separate literatures. First we contribute to literature studying

how consumer behavior affects innovation. Schmookler (1966) formalized the idea, calling

it “demand pull”. Building on this idea, several papers have demonstrated that market

size affects the speed of innovation. For example, Finkelstein et al. (2004) show that policies

promoting vaccine use accelerate the development of vaccines. Related, Dranove et al. (2014)

identify a “social value” of pharmaceutical innovation, showing that Medicare Part D spurred

the development of some drugs. If consumer behavior drives innovation which benefits

other consumers, it follows that a demand externality arises.3 In the context of obesity,

Bhattacharya and Packalen (2012) provide evidence that individual efforts to prevent obesity

can shrink the market size for obesity treatments, which slows technological progress. If

so, individuals may over-invest in preventative care compared to the social optimum. A

anti-retroviral drugs taken simultaneously could indefinitely delay the onset of AIDS.
3Demand externalities have been discussed in a variety of scenarios. For example, Allcott et al. (2015)

speculate that consumers who prefer unhealthy food may exert a negative externality on healthy eaters by
discouraging the purveyors of healthy foods from entering a market, thus contributing to the emergence of
“food deserts”.
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similar idea applies to experimentation with new products. Bolton and Harris (1999) argue

that a free-riding problem emerges if experimenting accelerates innovation. This relates to

our context if clinical trials provide social benefits by spurring innovation, in which case

individually rational consumers may choose to participate less than is socially optimal.

Related to the idea of “demand pull”, Goettler and Gordon (2011) show that market

structure also drives innovation. They find that in the market for computer processors, the

presence of a second firm can slow innovation (since firms do not expect to capture all profits),

but that consumer surplus falls due to monopolistic prices. In contrast to Goettler and

Gordon (2011), we add a second dimension to product quality in a model where innovation

is endogenous to demand, which means that consumer preferences can affect the direction

and the speed of innovation.4 In a setting where product quality is multi-dimensional,

consumers may benefit from innovations along one dimension of quality, but prefer to use

drugs that would encourage innovation along another dimension. For example, consumers

may be reluctant to experiment with new drugs that are not very effective, but have few side

effects, even though doing so could potentially encourage the development of drugs that are

highly effective and also have fewer side effects than existing drugs.

A second literature we contribute to studies dynamic demand under uncertainty. Fol-

lowing Petrin (2004), each product in our model is a bundle of characteristics.5 Moreover,

in our framework, characteristics can have dynamic impacts on consumers (Gowrisankaran

and Rysman, 2012). Literature on product choice has considered the idea that consumers

are unaware of product characteristics or match value. Erdem and Keane (1996) study the

value of experimentation with new products to learn about their qualities. Learning has

been incorporated into dynamic models of pharmaceutical demand. Examples are Crawford

and Shum (2005) and Chan and Hamilton (2006), where the latter paper explicitly discusses

the role of side effects. We incorporate learning and uncertainty into our model in several

ways. First, and similar to existing work, we model consumers as learning about existing

market products that they have never used. Second, consumers can experiment with new

products that are not yet widely available by participating in a clinical trial. Third, we

depart from existing work on dynamic demand in how we model consumer expectations over

the path of innovation. Most papers take the existing set of products as given or exogenous

to the model and focus on demand responses to new products. In contrast, we explicitly

4It is important to point out that, unlike Goettler and Gordon (2011), we do not explicitly model firm
interaction or dynamic decisions. Therefore, we are unable to conduct policy analysis related to market
structure using our framework. An interesting extension of the current paper would be to merge the two
approaches by integrating firm decision-making into a model where products have multiple qualities.

5Studies pioneering the ‘characteristics approach’ include Stigler (1945), Lancaster (1966) and Rosen
(1974).
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model how consumers form expectations about future innovations, and allow them take into

account that aggregate market shares can shift the direction of innovation.

Methodologically, we build on Hotz and Miller (1993) and Hotz et al. (1994) in using for-

ward simulation to incorporate how individuals form expectations about future innovations.

In our context, the choice set that individuals face is non-stationary. We handle this problem

by re-defining the current state of technology using a stationary distribution of innovations

and a non-stationary reference point or centroid for innovation that emerges endogenously

from consumer demand. This is similar to what Goettler and Gordon (2011) do in their

framework when studying microprocessor speed. However, in their setting, product quality

is one-dimensional and the innovation distribution is effectively binary (either improving by

a fixed amount or not). In our case, we need to account for demand externalities where

product quality is multi-dimensional, which means that new product qualities can move in

many different directions on a two-dimensional plane. Moreover, as we show, the empirical

distribution of innovations for HIV drugs is not well-approximated as movements with a fixed

distance. In light of these features of our setting, when computing lifetime utility associated

with each choice, we use forward simulation to capture how consumers make decisions after

forming expectations about potential future innovations.

The remainder of this paper is organized as follows. Section 2 describes the data set we

use. In Section 3, we specify the structural model and in Section 4 we discuss estimation.

In Section 5, we present parameter estimates and describe model implications for the distri-

bution of innovations. In Section 6, we use the estimated model to conduct counterfactual

policy simulations. Section 7 concludes.

2 Data

In this section we introduce the data set used in this paper and describe some of the key

empirical patterns we use to identify structural parameters. We use the public data set

from the Multi-Center AIDS cohort Study (MACS). The MACS is an ongoing longitudinal

investigation (beginning in 1984) of HIV infection in men who have sex with men (MSM)

conducted at four sites: Baltimore, Chicago, Pittsburgh and Los Angeles.6 At each semi-

6Data in this manuscript were collected by the Multi-Center AIDS Cohort Study (MACS) with centers
(Principal Investigators) at The Johns Hopkins Bloomberg School of Public Health (Joseph B. Margolick,
Lisa P. Jacobson), Howard Brown Health Center, Feinberg School of Medicine, Northwestern University,
and Cook County Bureau of Health Services (John P. Phair, Steven M. Wolinsky), University of California,
Los Angeles (Roger Detels), and University of Pittsburgh (Charles R. Rinaldo). The MACS is funded
by the National Institute of Allergy and Infectious Diseases, with additional supplemental funding from
the National Cancer Institute. UO1-AI-35042, 5-MO1-RR-00052 (GCRC), UO1-AI-35043, UO1-AI-35039,
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annual visit, survey data are collected on HIV+ men’s treatment decisions, out-of-pocket

treatment expenditures, physical ailments, which can reflect drug side effects, along with

sociodemographic information, such as labor supply, income, race, and education.

In addition, blood tests are administered at each visit to objectively measure health

status. Our main objective measure of immune system health is CD4 count, defined as the

number of white blood cells per cubic millimeter of blood. Absent HIV infection, a normal

range is between 500 and 1500. For HIV+ individuals, a count below 500 indicates that the

immune system has begun to deteriorate due to HIV, but can still fight off infections such

that the individual is not symptomatic. When CD4 count drops below about 300, a patient

is said to suffer from AIDS.7 AIDS means that the immune system becomes unable to fight

off routine infections and survival probability drops.

2.1 Summary Statistics

The full MACS data set contains information on 6,972 subjects at 49 possible semi-annual

visits for a total of 111,271 observations in the form of subject-visit dyads. We limit our

attention to HIV+ individuals, leaving us with 47,753 observations. Due to lack of data on

gross income and out-of-pocket treatment costs at earlier visits, we drop observations prior

to visit 14 (roughly, late 1990) and for robustness in the reporting of survival we also drop

observations after visit 47 (about 2008). These sample period restrictions leave us with 29,523

observations and 2,420 individuals. Next, we drop observations where data are missing on at

least one of the variables used in subsequent analysis (though we conduct various robustness

checks to insure that our results are not driven by these exclusions). After these exclusions,

the remaining analytic sample consists of 1,719 unique individuals and 16,851 observations.

Summary statistics by individual are reported in Table 1. The first column presents

statistics for the analytic sample.8 68% of sample subjects are white, 22% are black and

about 9% are hispanic. Race variation is important since previous research has emphasized

difficulties in recruiting blacks into clinical trials, which may reflect different costs associated

with treatments or variation in expected health outcomes. About 86% of the sample received

some secondary education or more and nearly a quarter (23%) attended graduate school.

Consistent with previous research studying medication choice using the MACS data set,

there is evidence of substantial variation in labor supply (Papageorge, 2016). 74% of the

UO1-AI-35040, UO1-AI-35041. Website located at http://www.statepi.jhsph.edu/macs/macs.html.
7AIDS stands for acquired immunodeficiency syndrome. The CD4 cutoff below which AIDS occurs varies

between 200 and 350.
8For comparison, the third column reports statistics for a larger sample of 2,420 individuals, where we

have not dropped observations due to missing data on any particular variable.
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sample is observed working at least once and 68% of the sample observed not working at

least once.

Underscoring the seriousness of HIV infection, about 40% of the HIV+ subjects we ob-

serve at least once over the sample period die prior to the end of the sample period. However,

product market innovation led to drastic changes for HIV+ men. The most striking example

is the introduction of HAART in the mid-1990s, which was much more effective at improving

underlying health compared to the treatments that preceded it. Conditional on surviving

until the invention of HAART, 20% of subjects are observed dying. This understates the

impact of HAART since the sample under study is an aging cohort, i.e., survival rates are

much higher when the cohort is considerably older when HAART is available. Further, ac-

cording to Table 1, about 83% of subjects are observed using a market product at least once.

Moreover, nearly a quarter (24%) opt for early access by participating in a clinical trial at

least once during the sample period, suggesting that patients are willing to try experimental

products where quality is uncertain.

2.2 Innovation and Consumer Demand

In this section, we consider pre versus post-HAART behavior to investigate how consumers

respond to pharmaceutical innovation. Since HAART marked a large innovation on earlier

treatments, it lead to strong and observable consumer responses that help identify consumer

preferences. Summary statistics for subject-visit dyads are found in Table 2 for the full ana-

lytic sample (column [1]) and then separately for the pre and the post-HAART eras (columns

[2] and [3], respectively). We split the sample by HAART era to illustrate substantial changes

to choices and outcomes after HAART was introduced.

Perhaps the most striking example of the impact of HAART on consumers is through

its effect on survival. In Figure 1(a), we plot the probability of dying between periods t

and t + 1 conditional on survival until t. Death rates are much higher prior to HAART

introduction and despite a multitude of new treatments coming available. After HAART,

death rates plunge, and continue to fall until 2007, as smaller innovations occur that make

drugs incrementally more effective and less toxic. In Figure 1(b), we plot average CD4 count

over time for people on market drugs and no treatment for HIV. Over time, health for people

taking no drugs remains fairly constant while health for individuals in a market drug rises.

Notice that average age rises and labor supply and income decline after HAART, consis-

tent with the fact that we observe an aging cohort, which is more likely to retire and report

lower gross income over time. HAART introduction also affected immune system health,

as measured by CD4 count. According to Table 2, average CD4 count among HIV+ men
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in our sample is 407 in the pre-HAART era, rising to 524 in the post-HAART era. Inter-

estingly, after HAART, the proportion of individuals reporting physical ailments declines

only slightly (45% to 41%). The small change reflects the net effect of two countervailing

dynamics (Papageorge, 2016). HAART improved health on average, which lowered reported

ailments attributable to symptoms of HIV. However, HAART also led to side effects among

users, thereby increasing reports of ailments. The increase in side effects also reflects how

use of HIV treatment rose with the introduction of HAART, from 45% to 76%.

The rise in consumption of HIV treatments after HAART was introduced suggests that

patients are more likely to use drugs despite side effects if the utility cost of suffering ailments

is offset by expected improvements to health. HAART was more effective than earlier drugs,

which encouraged people to use it despite its side effects. Another shift in consumption of

HIV treatments occurred after HAART and in relation to participation in clinical trials.

Trial participation in the post-HAART era is about half its pre-HAART level. This drop

is consistent with the idea that individuals are willing to experiment with potentially low-

quality technologies by trying new drugs if no good market products are available. However,

once innovation has led to technological advances, individuals are less willing to experiment

with potentially low quality drugs.

Given the impact of HAART on health, it is important to understand why many con-

sumers did not use it. In Figure 1(c), we plot the proportion of HIV+ consumers using an

HIV treatment. Notice that treatment consumption is about 50% in 1990 and actually falls

prior to HAART introduction. This reflects that products available on the market are of

fairly low quality. Still, if quality were uni-dimensional, even a low quality drug would be

better than no drug at all. Treatment costs are one possibility. In Table 2, we see that

treatment costs rise after HAART introduction, from about $179 to $327 for six months of

treatment. In Figure 1(d), we plot out-of-pocket treatment costs over time for individuals

who use drugs (takers) and for individuals who are not on any HIV drugs (non-takers). We

see that costs are low (averaging between 300$ and 600$ per year for individuals earning

on average about $37,000 per year). Second, non-users of market drugs pay non-zero costs

for drugs, perhaps spending more money on medication to fight opportunistic infections. In

other words, the incremental out-of-pocket cost of HIV treatments does not appear sufficient

to explain why some people avoid HIV treatments.

Another possibility is that drug quality is multi-dimensional in which case demand reflects

a distaste for another feature of HIV drugs. Given data on physical ailments, we explore

the possibility that consumer demand reveals a distaste for side effects. This would explain

the rapid rise in use of HIV treatments after HAART is introduced since individuals would

be more willing to use drugs with side effects as long as drugs are effective at improving
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underlying health. Evidence in support of this idea is market consumption by CD4 count,

plotted in Figure 2(a). Sicker people are far more willing to take low effective medications

despite side effects in the years before HAART. After HAART, notice a striking convergence

in the proportion of men using medications, driven largely by healthy individuals going onto

medication. We also plot physical ailments over time in Figure 2(b). For non-users of HIV

medications, ailments remain fairly steady. For users of HIV medications, ailments drop prior

to HAART introduction and then rise after HAART, which is consistent with HAART being

a highly effective drug with side effects. However, after 2001, ailments decline for individuals

using HIV drugs. This reflects later improvements to medications, which lowered their side

effects.

Another option for individuals in the product market we study is to join a clinical trial to

gain early access to new products. Studying how individuals experiment with new drugs by

joining a clinical trial further highlights how consumers respond to innovations in the market

for HIV drugs. Trial participation over time is plotted in Figure 2(c). Trial participation

hovers around 4%, but begins to rise in the years leading up to HAART introduction. This

reflects two dynamics. First, as individuals became ill, they were more willing to experi-

ment with new products of uncertain qualities. Second, in the years just prior to HAART

introduction, the drugs that comprise HAART, including protease inhibitors, marked a sub-

stantial improvement over drugs available on the market. In those years, trial participation

gave individuals early access to much better products. This relates to the idea of beta testing

in markets where some consumers are willing to experiment with new products with high

potential quality. Finally, notice that trial participation plunges after HAART is introduced

as a market option. The reason is that individuals no longer need to participate in a clinical

trial (and face therefore more uncertainty) to access good drugs. In support of this idea,

we consider participation by CD4 count in Figure 2(d). Notice, early trial participation is

driven largely by individuals with low CD4 counts. After HAART, there is a marked conver-

gence, which means that once effective drugs are available, it is no longer possible to explain

trial participation as an option for people who are very sick and therefore willing to face

uncertainty in exchange for early access to a high-quality product.

2.3 Market-Level Innovation

In the previous section, we studied how consumer responses to innovation shed light on

consumer preferences. The patterns we have described until now are consistent with the

idea that patients value their health, but are also concerned with side effects. Moreover, side

effects seem to play a larger role in demand after survival is more or less assured. However,
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our preliminary evidence also suggests that preferences are not lexicographic. Patients seem

willing to use toxic (or experimental) medication if the alternative is a large rise in the

probability of dying, but patients will also forgo treatments with harsh side effects if drugs

are not effective and the survival gains are limited.

In this section, we consider market-level innovation. To start, we illustrate innovation

and diffusion of new products over time in the market for HIV treatment using a “heat map”

displayed in Figure 3. For the approximately 90 drugs that were most used, we compute

market share over our sample period.9 Dark blue corresponds to no market share and

warmer colors mean higher market shares. In the early years of the epidemic, there are only

a few drugs with high market share. Over time, many new drugs emerge, most with lower

market share. The heat map captures two important patterns in the data. First, many new

drugs were invented over time. In other words, the market for HIV drugs was active over

our sample period. Second, most old drugs eventually exit and are replaced by new drugs,

which means that new drugs marked improvements upon older ones. A striking shift occurs

in the mid-1990’s, after which point most earlier drugs exit, replaced by new drugs. This

corresponds to HAART introduction, when protease inhibitors (PI’s) were introduced and

became a standard part of HIV treatment. After HAART, moreover, many drugs became

obsolete.10

Finally, we ask whether the observed innovation path can be seen as a response to con-

sumer preferences. In other words, we search for evidence of the idea that demand drives the

direction of innovation. In Figure 4, we plot drug qualities (effectiveness and side effects)

for different periods of time. The figure illustrates the path of technology over time. Notice

how there is a large innovation in the direction of improved health in the mid-1990’s. This

improvement is the introduction of HAART. Moreover, notice that there is some evidence

of a rightward shift in later years as innovations reduce side effects without offering much of

an improvement in efficacy. This rightward shift is important as it corresponds to changes

on the relative importance of one dimension of taste over another. We argued previously

that consumer demand patterns, as the market for HIV drugs matured, seem to show a

preference for drugs with fewer side effects, especially when survival is less of a concern.

The path of innovation seems to have followed shifts in market demand after HAART was

introduced. Therefore, preliminary empirical patterns provide support for the idea that

9Appendix A is a data appendix that contains additional information on individual drugs and treatment
combinations. Table S1 discusses which drugs or combinations are taken in clinical trials. Table S2 lists
the chemical compositions of each drug. Table S3 shows how drugs are combined into treatments. Table
S4 discusses “core treatments”, which are the main sets of treatments we observe, including the individual
drugs they are composed of, whether or not they count as HAART and their entry and exit visits.

10An exception is AZT, which remained a standard component of HAART.
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innovation responded to consumer demand.

3 Model

We specify a model in which individuals maximize lifetime utility by choosing an HIV medical

treatment. Medical treatments can improve health and increase lifespan, but have potential

side effects, which affect survival and labor market outcomes. Individuals can choose an HIV

treatment that is available on the market, opt for no treatment at all or experiment with a

new treatment by participating in a clinical trial.

In making decisions, individuals face several sources of uncertainty. First, they are uncer-

tain about current-period outcomes, including their income and side effects, all of which are

affected by their treatment decision. Second, individuals are uncertain about the evolution

of other individual-specific state variables, notably health and survival, which are likewise

affected by medical treatment. Finally, individuals face uncertainty over the evolution of the

product market since new treatments may enter the market and some incumbent treatments

may drop out.

In specifying the model, we begin with the individual’s problem. We introduce state

variables, choices, flow utility and the stochastic processes governing current-period outcomes

and state-to-state transitions. Using these components we specify the value function. Next,

we discuss the evolution of the aggregate state, which will be endogenous to individual

choices. In particular, we discuss entry of new treatments and exit of incumbent treatments.

3.1 The Individual’s Problem

The individual chooses medical treatment to maximize expected discounted lifetime utility.

In making decisions, he observes his current set of state variables which includes individual-

specific variables, such as health, and market-level variables, such as the state of medical

technology. Individuals use market-level variables to form expectations over the future path

of innovation. In specifying the individual’s problem, we begin by introducing state vari-

ables, choice set, flow utility and stochastic processes governing outcomes and state-to-state

transition probabilities. Next, we specify the value function.
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3.1.1 State Variables

The state for individual i at period t is denoted Zit, where

Zit ≡ 〈zit, εit〉 (1)

zit is a set of state variables that is further sub-divided into a set of individual-specific

variables, denoted zIit, and a set of aggregate variables denoted zMt :

zit ≡
〈
zIit, z

M
t

〉
(2)

The individual-specific state variables, zIit, are

bi : a set of race indicators

edui : a set of education indicators

hit−1 ∈ R+ : health at the start of period t

ait−1 ∈ {25, 25.5, . . .} : age at the start of period t

lit ∈ {0, 1} : working during period t

qit−1 =
{
qxit−1, q

h
it−1

}
∈ R2 : characteristics of product consumed last period

ηi : person-specific income characteristic

The individual can be either white, black or Hispanic. He belongs to one of four mutually

exclusive educational categories: high school, some college, college, and more than college.

His health, measured by CD4 count, is a continuous positive number.11 His age is measured

in half-year increments, corresponding to the frequency of MACS data collection. lit indicates

whether he will work during period t.

Each HIV treatment has two characteristics: its effectiveness at raising CD4 count, which

we denote θh, and its propensity to cause side effects, denoted θx. We collect these into a

vector denoted θ ∈ R2. If the individual consumed a market product in the prior period, the

characteristics of that product, denoted qit−1, are part of his current state space. Finally, all

elements of zIit are observed to the econometrician except ηi, which is an exogenous person-

specific characteristic that affects the income process and is described below.

Besides individual-specific variables, zit contains variables summarizing the current ag-

gregate landscape defined as

zMt ≡ 〈Wt, ωt,Ft〉 , (3)

11CD4 ranges from 0 to 2915 in our analytic sample with a median of 448. Healthy CD4 counts are those
above 500 units per mm3 and typically range between 500 and 1,500.
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Individuals use zMt to forecast the evolution of the market. Wt consists of characteristics

of market products that are available at time t. ωt is a point in the product space that

summarizes the current state of technology. Individuals use ωt to make forecasts about new

drugs that may enter the market in the future. Ft is the aggregate joint distribution of con-

sumer characteristics which individuals use to compute expectations over aggregate behavior

determining the future evolution of the market. The elements of zMt will be described in

further detail below, when we discuss how we model the evolution of the product market.

Finally, individuals also face a vector of choice-specific additive utility disturbances εit,

which are unobserved to the econometrician and assumed independent across time, individ-

uals and choices.

3.1.2 Choices

At each period t individual i chooses whether or not to use medication. If he opts for

medication, he may choose the same product he consumed in the last period or he may choose

from the set of other treatments that are currently available on the market. Alternatively,

he may choose a trial treatment. The individual faces uncertainty about the quality of both

market and trial treatments.

We begin with uncertainty over market treatments. If the individual chooses the same

market treatment he consumed in the prior period, he faces no uncertainty regarding its

characteristics. As discussed in the previous section, the individual’s state space includes

the characteristics of the drug consumed in the prior period qit−1. On the other hand, if the

individual chooses a different market drug, his alternative is to choose one among several

groups or clusters of drugs with similar qualities. The agent is then randomly assigned a

drug within the cluster he selected.

Formally, at every period t there is a set of market products Pt clustered in several

groups collected in Gt. Gt denotes both the collection of clusters available at t and the

cardinality of the collection. When individual i decides to consume a market treatment that

is different from the one he consumed in the prior period, he must choose from a cluster

gt ∈ Gt. By selecting group gt he chooses a gamble among all products in group gt. The

distribution of products within the group is given by weights that are a function of the

treatment characteristics and the number of products in the group. The estimation of these

weights is explained below. Even though the moments of the within cluster distribution

are generated by the underlying products in the cluster and their weights, we assume that

agents only observe the first two moments of the within cluster distributions and that these

are sufficient to describe the distribution.
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Our clustering process is a device to make estimation feasible by reducing the state

space significantly while still allowing individuals to choose among different options in the

market.12 In order to avoid scaling issues when using our clustering algorithm, we assume

that clustering occurs with respect to scaled product characteristics denoted θ̃ ∈ [−1, 1]2 that

are explained in the estimation appendix (Appendix B). Then we obtain product groups at

t by solving a k-means algorithm that approximates the solution of the following objective

function13

min
1{k∈g}k∈Pt |Gt

Gt∑
g=1

∑
k∈Pt

1 {k ∈ g}
∥∥∥θ̃k − θ̃ck∥∥∥2

s.t.
∑
g∈Gt

1 {k ∈ g} = 1 for all k ∈ Pt (4)

where the centroid of cluster k, θ̃ck, is defined as

θ̃ck =

∑
k∈Pt

1 {k ∈ g} θ̃k∑
k∈Pt

1 {k ∈ g}
(5)

The algorithm is explained in detail in Appendix B. At any given period we set the maximum

value of Gt at Gmax so that the individual knows how many groups will be available every

period. Gmax is chosen so that there is a non negligible number of consumers choosing each

group in the data. We set Gmax = 3.

We do not model the variation of within cluster assignment endogenously. Instead,

we develop the concept of within cluster weights as functions of products’s characteristics.

Weights are estimated in the following fashion:

1. We compute a nonlinear regression of within cluster shares on treatment characteristics:

sk|gt = exp
(
Xw
k,tβ

w
)

+ εwk|gt (6)

where Xw
k,t includes a constant term, the ranking (within its cluster) of the character-

istics of the product, the number of members in the cluster, whether the product is

new, and several interactions.

2. We obtain predicted within cluster shares ŝk|gt and compute the weight of product k

12This approach is close to reality if individuals only observe product labels and do not know their char-
acteristics beyond the fact that groups of product labels are associated to a certain mean and variance of
characteristics.

13See Duda and Hart (1973) and Andrew W. Moore’s K-means and Hierarchical Clustering tutorial at
http://www.cs.cmu.edu/∼awm/tutorials.html.
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in cluster gt as

s̃k|gt =
ŝk|gt∑
r∈gt ŝr|gt

(7)

If the individual chooses neither to try a cluster nor to stay in his previous treatment, he

may instead experiment with a new drug that is available only in a clinical trial. Trial product

characteristics are unknown, but are distributed according to Fθ|ωt , where ωt, discussed

below, characterizes the distribution from which experimental drugs will be drawn. A key

difference between consuming group gt and the trial treatment is that once the individual

chooses a group a treatment is assigned to him, he has the chance of choosing that treatment

with certainty the next period.

Having described each option, we now formally specify the choice set. Let djit be the

choice indicator that takes the value of one if agent i in period t chooses medical treatment

j in the choice set Cit. Notice, the choice set is time-specific since the market for available

products evolves as new products enter the market and incumbent products exit. The choice

set is also individual specific since individuals who chose a market treatment in the prior

period may choose that treatment again. If the individual did not choose a market treatment

in the prior period his choice set is:

Cit =



0 No Treatment

1 Cluster gt = 1

2 Cluster gt = 2
...

...

Gmax Cluster gt = Gmax

Gmax + 1 Trial

(8)

If the individual chose a market treatment in the prior period his choice set Cit is augmented

by one alternative to include the possibility of consuming his previous period treatment

again.

3.1.3 Utility

Next, we specify the flow utility function to capture how the individual’s product choices

are driven by the effects of each treatment choice on health, ailments, income, out-of-pocket

payments, and non pecuniary benefits. For choice j ∈ Cit and state zit, the utility at period

t for individual i is a function of his health, ailments, and net income given by

yjit + εjit = αjit (zit) + αm(mjit − ojit) + αxxjit + αxpxjit(1− d0it) + εjit (9)
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where mjit is gross income, ojit are out-of-pocket payments, xjit is an indicator for whether

the individual does not suffers ailments, d0it is the indicator of whether he chooses not to con-

sume a treatment, and εjit are unobserved choice-specific taste shocks that are independent

over time as well as across alternatives and individuals. The interaction of the no-ailments

indicator and the treatment choice indicator is used to capture a distaste for side effects,

which are ailments arising from treatment consumption.

In equation (9), αjit (zit) are choice-specific preference parameters that depend on ob-
servables. They are defined as

αjit (zit) ≡ α′jbbi + αjaait−1 + αjhhit−1 (10)

We assume that consumer preferences over clusters are fully captured by cluster character-

istics. Therefore, we assume parameters α′jb, αja, and αjh to be constant across clusters.

This is the characteristics approach commonly used in structural models of demand which

explains consumer choices as a function of product qualities. In contrast, participating in

a clinical trial may offer differential benefits related to the psychological costs (or benefits)

from being part of an experiment. We also allow the choice of remaining in the same prod-

uct to have differential non pecuniary benefits in order to capture factors, such as switching

costs, which explain why consumers may continue using a product they have used before

even as better products enter the market. Finally, we normalize the non pecuniary benefits

from not consuming a treatment to zero.

3.1.4 Outcomes and Transitions

In this section, we specify the stochastic processes governing state variables in zit as well as

the outcome variables: income, out-of-pocket payments, ailments, and survival.

Income: Gross income is a function of today’s state, zit, and ailments, xjit. It is given by

mjit = Xm
jitΓ

m + ηi + εmit (11)

where Xm
jit = [1, hit−1, . . . , h

7
it−1, ait−1, a

2
it−1, bi, edui, lit, xjit]. Gross income does not include

product cost, which is accounted for in the payments equation below. Equation (11) is

estimated using random effects and individual-specific income characteristics are estimated

consistently as

η̂i =
∑
t

∑
j

djit

(
mjit −Xm

jitΓ̂
m
)

Individuals observe the income iid shocks εmit before making their choice.

Payments: Out-of-pocket payments are censored at zero. They are given by the following
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tobit specification

ojit = o
(
Xo
jit, ε

o
it; Γo

)
(12)

where Xo
jit = [1, hit−1, . . . , h

6
it−1, ait−1, a

2
it−1, bi, edui, {djit}5

j=0, lit, xjit] and εoit is the error term

in the underlying equation. Since we do not directly observe prices, and in order to simplify

the problem, we assume a constant cost of participating in a trial as well as a constant cost

of consuming a market product.14

Labor Supply: We do not model labor supply explicitly as a choice as it is not the main

purpose of this paper. However, labor supply may be affected by treatment choices, e.g.,

through health status and physical aliments. Moreover, labor supply also affects income and

therefore utility. To capture this, we treat labor supply as a state variable that individuals

know at the beginning of the period before making their treatment decision. Individuals

draw their labor market participation from the distribution characterized by

Pr[lit = 1|X l
it] =

1

1 + exp(X l
itΓ

l)
(13)

where X l
it = [1, lit−1, hit−1, . . . , h

4
it−1, ait−1, a

2
it−1, bi, edui].

Physical Ailments: First, define the characteristics of the treatment as a function of the

choice as

θ(djit) = {θx(djit), θh(djit)} (14)

where θ(djit) = qit−1 if the individual consumes his prior-period market treatment.

Ailments are determined by a production function the inputs of which are drug char-

acteristics and health. Let xjit be an indicator that takes the value of 1 if the individual

does not suffer ailments in t. The probability of not having physical ailments for individual

i choosing j ∈ Cit at time t is modeled as:

Pr [xjit = 1|·] =
exp

(∑5
m=0 γ

x
mh

m
it−1 + θx (djit)

)
1 + exp (·)

(15)

Health: CD4 count is our objective measure of health. Like ailments, health at the beginning

of period t+1 is a function of drug characteristics and health. The health production function

is specified as:

hjit =
5∑

m=0

γhmh
m
it−1 + θh (djit) + εhit (16)

14End-users customarily pay a standardized deductible that is a fraction of the brochure price of the drug
paid by the insurance company. Median out-of-pocket drug costs are about $300 every six months for a
regime of drugs that would cost the insurance company between $5,000 and $15,000.
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The distribution of the health disturbance is estimated non-parametrically using the residuals

of the health production function. We assume that E[εhit|Xh
it] = 0, where Xh

it is the vector of

regressors in the health production function.

Survival: At the end of any period t individuals may survive into the next, denoted by

Sit+1 = 1, with the following probability

Dit+1 (zit+1) ≡ Pr[Sit+1 = 1|zit+1] =
1

1 + exp(Xd
itΓ

d)
(17)

where Xd
it = [1, hjit, . . . , h

5
jit, ait, a

2
it, bi, edui, xjit].

3.1.5 The Value Function

We define the value function conditional on choice j ∈ Cit, net of taste shocks, for individual

i at time t as follows:

vjit(zit) = E
[
yjit + β

[
Dit+1 (zit+1) max

c∈Cit+1

{vcit+1(zit+1) + εcit+1}
]∣∣∣∣ zit, j] (18)

Expectations are taken over product characteristics affecting the flow utility and the evo-

lution of both observed and unobserved state variables. Expectations over the evolution of

unobserved state variables are independent conditional on the current set of state variables.

Therefore, we can rewrite equation (18) as

vjit(zit) = Ey[yjit|zit] + βEz
[
Dit+1 (zit+1)Eε

[
max
c∈Cit+1

{vcit+1(zit+1) + εcit+1}
]∣∣∣∣ zit, j] (19)

The first expectations operator, Ey, denotes expectations over outcomes that affect flow util-

ity, including income and physical ailments. The second operator, Ez, denotes expectations

over the evolution of observed state variables zit, including health and variables that sum-

marize the state of the product market. The third operator, Eε, denotes expectations taken

over the joint distribution of unobserved choice-specific taste shifters.

3.2 The Evolution of the Aggregate State

Until now, we have described the individual’s decision conditional on the available set of

products and other aggregate characteristics of the market. Now we turn to the evolution

of aggregate market-level characteristics, which includes product entry and exit. The set of

market-level state variables, denoted zM, contains the characteristics of all market products

that are available at time t, Wt, a summary of the current state of technology, ωt, and the
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aggregate joint distribution of individual characteristics, Ft. In the model, the number of new

products is a function of previous innovations and the share of trial users. The characteristics

of new products are a function of aggregate behavior summarized by ωt and an exogenous

distribution of innovations. Product exit is also a function of individuals behavior: products

are leave the market if their shares determined by aggregate consumer choices fall below a

threshold, where the threshold is explained below. Finally, since aggregate consumer choices

(a function of state variables) help to determine the evolution of the market, each individual

who forecasts product evolution must also form expectations over aggregate state variables

of the consumers in the market.

3.2.1 Product Entry

In each period, entry of new products occurs according to a reference point for innovation

or centroid, denoted ωt−1, a distribution of characteristics of new products Fθ|ωt−1 and a

distribution of number of new products FN .

Centroid: (ωt): At any period t, the centroid for innovation is a weighted average of products

available last period, given by:

ωt =
∑

k∈Pt−1

(
sPt−1

(
sk|P,t−1

)
+

Gt−1∑
g=1

1 {k ∈ g} sgt−1s̃k|g

)
θk (20)

where θk are the characteristics of product k. The weight given to the characteristics of

product k is the sum of the lagged share of people “staying” on their previous product, sPt−1,

multiplied by the share of stayers who were taking product k, sk|P,t−1, plus the sum over all

groups of an indicator of product k belonging to group g multiplied by the lagged share of

people choosing to switch into cluster g, sgt−1, times the weight of product k in cluster g,

s̃k|g. The lagged shares sPt−1 and sgt−1 are conditional on consumption of a market product

so that sPt−1 +
∑Gt−1

g=1 s
g
t−1 = 1.

Characteristics of New Products (Fθ|ωt): Every new product introduced at t, characterized

by θ, is an innovation around the previous-period centroid:

θ = ωt−1 + ν (21)

where ν ∼ Fv is the stationary distribution of innovations. Notice that ωt−1 and Fv determine

Fθ|ωt−1 .
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Number of New Products (FN): In each period, we observe that the number of new products

introduced in the market varies. Moreover, the number of products thrown into the market

seems to be related to the size of previous discoveries as well as to the share of individuals

consuming the trial product. We capture these facts in our specification for the distribution

over the number of draws to be taken from Fθ|ωt−1 . At any period, a number Newt of new

products may enter the market at t. This number follows a negative binomial that permits

dispersion in the mean:

Newt|µ∗ ∼ Poisson (µ∗t )

µ∗t ∼ Gamma
(
1/αN , αNµt

)
µt = exp(βN0 + βN1 MaxChanget−1 + βN2 TrialsSharet−1)

lnαN = αN0 + αN1 MaxChanget−1 (22)

where αN and βN are vectors of parameters to be estimated. The binomial model is condi-

tioned on two covariates: MaxChanget−1 and TrialsSharet−1. The share of people going

to trials in the previous period captures the fact that more experiments can be advanced

if more people participate in clinical trials. The variable MaxChanget−1 captures the rela-

tively higher number of new products that follow the appearance of better innovations. It is

computed as follows:

MaxChanget−1 =
∑
r∈h,x

maxθr new at t−1

{
θr − ωrt−2

}
maxθrnew at τ,∀τ

{
θr − ωrτ−1

} (23)

It measures the distance between the previous period’s new products and the previous pe-

riod’s centroid. The relative change is computed for each of the two characteristics (health

and no-ailments) and is scaled by the maximum change observed over the sample period.15

The specifications of ωt, Fθ|ωt−1 , and FN render the path of innovation endogenous. The

reason is that individual choices, summarized by market shares, affect the centroid in equa-

tion (20). By affecting ωt, market shares affect the characteristics of every new product θ

in equation (21). Intuitively, treatments that keep patients alive and those associated with

fewer ailments will capture larger shares of the market and firms will innovate on drugs with

larger market shares. Additionally, individuals’ choices affect the path of innovation through

15Note that in order to compute MaxChanget−1 we need the scaling quantities given by

max
θr new at τ,∀τ

{
θr − ωrτ−1

}
(24)

for r ∈ {h, x} which are estimated consistently by their data counterparts. Recall all new products at t are
draws from the innovations distribution conditional on ωt−1.
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their effect on the distribution of number of new products.

3.2.2 Product Exit

Incumbent drugs may also exit the market. Exit happens on the underlying product space Pt
and it happens at two different levels: exit for switchers and overall exit. Exit for switchers

happens when the product is no longer available for people to switch into it but people may

still stick to it if they consumed the product in the prior period. Individuals face regulation

that prevents them from buying the product they consumed last period and selling it to

other customers that wish to switch to it. Overall exit happens when the product is no

longer available to any consumer. Exit happens according to the following rules that aim to

reconcile empirical observation and theory—where expected shares must be positive due to

assumptions on the taste shocks.

1. If the ratio of people switching and being assigned product k relative to the number

of people switching falls bellow σ̃1 during three consecutive periods, the product is

withdrawn from the market. σ̃1 is chosen as the minimum conditional share observed

in the data and the number 3 is chosen to smooth the market spells of products.

2. If the ratio of people consuming product k, either by staying or switching, relative to the

number of people consuming a market product falls below σ̃2 during two consecutive

periods, the product is withdrawn from the market. σ̃2 is chosen as the minimum

conditional share observed in the data and the number 2 is chosen to smooth the

market spells of products.

3.2.3 Aggregate Consumer Characteristics

In order to forecast aggregate behavior that determines the path of technology, individuals

form expectations over the joint distribution of individual characteristics, Ft. In section

3.1.1 we specified individuals characteristics to be race, education, health, age, working

status, person-specific income characteristics, and characteristics of last product consumed.

Conditional on the current aggregate state, the future aggregate state is simply a mapping

of aggregate behavior. Formally,

Ft+1 = G (Ft, G(ε), ωt,Wt) (25)

G is the mapping from today’s aggregate state into one-period-ahead aggregate state implied

by current period choices and states.
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Consider the following example to fix ideas. Suppose the only individual characteristic

in the support of F is health. Then, equation (16) reduces to

hit+1 = f̃(hit, dit(hit, εit, ωt), ωt) + εhit

for some function f̃ , where dit is the vector representing the individual’s choice. Let fεh be

the pdf of health shocks. Then the probability that an agent chosen at random will have

health h′ tomorrow can be forecasted as

Pr(ht+1 = h′|Ft(h), G(ε), ωt) =

∫
fεh

(
h′ − f̃(h, d(h, ε, ωt), ωt)

)
dFt(h)dG(ε)

=

∫
fεh

(
h′ − ˜̃f(h, ε, ωt)

)
dFt(h)dG(ε)

4 Estimation

We start by summarizing our estimation procedure. We then provide more details about

some of the pieces involved. For a more extensive treatment of the estimation procedure we

direct the reader the estimation appendix (Appendix B). Our estimation procedure can be

summarized in the following steps

1. Definition of products as treatments. Our estimation starts with the definition of prod-

ucts. We define a product as a combination of single-product components. Examples

of products are AZT or the combination of AZT+3TC+Saquinavir.

2. Estimation of outcome equations. We estimate processes for income, out-of-pocket

payment, labor supply and survival. Heath and no-ailments equations will be estimated

in the next step (see equations (11), (12), (13), and (17)).

3. Estimation of product characteristics. Given products defined in step 1, we estimate

product characteristics (see equations (34) and (35)).

4. Clusters. Using the estimated product characteristics in step 3, we use a k-means

algorithm to obtain clusters of products for every period (see equations (4)).

5. Within cluster weights. Using the clusters obtained in step 4 and the product charac-

teristics from 3, we obtain within clusters weights as non-linear regressions of within

cluster share on covariates (see equations (6) and (7)).
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6. Cluster characteristics. Using the clusters obtained in step 4, product characteristics

from step 3, and within cluster weights form step 5, we compute cluster characteristics—

mean and variance matrix.

7. Centroid. Using product characteristics from step 3, clusters from step 4, and within

cluster weights from step 5, we back out innovation centroids for every period (see

equation (20)).

8. Distribution of innovations. Every new product is modeled as a draw around the cen-

troid (see equation (21)). Hence, for every new product at a given period we compute

the realized innovation around the centroid, which is the residual from subtracting the

centroid (step 7) from the product characteristic (step 3). Using the realized inno-

vations we non-parametrically estimate the stationary distribution of innovations, Fv.

9. Distribution of number of draws. Using data regarding the amount of new products per

period we estimate the distribution of number of new products specified as a negative

binomial with dispersion in the mean (see equations (22) and (23)).

10. Conditional choice probabilities. Using cluster characteristic from step 6, centroids

from step 7 and other aggregate and individual-specific state variables we estimate

parametric conditional choice probabilities (see equations (36), (38), and (37)).

11. Structural utility parameters. We follow Hotz et al. (1994) and use forward simulation

to generate choice and technology paths as well as future individual states that will

serve as inputs to the simulated future value function. In our forward simulation we

use estimated conditional choice probabilities (step 10), the distribution of number

of draws (step 9) and the distribution of innovations (step 8) as well other estimated

processes (step 2 through step 7). Finally, we implement a GMM estimator using a

moment condition which is a function of the forward simulated data, conditional choice

probabilities, and utility parameters.

In section 4.1, we derive theoretical moment conditions and their empirical counterparts used

in estimation. In Section 4.2, we discuss our forward simulation.

4.1 The Moment Conditions

We obtain two different representations of the differences in conditional value functions to

construct moment conditions that we use to estimate the structural utility parameters. Our
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first representation follows from our assumption that the taste shocks εjit are iid Extreme

Value Type-I. Under this assumption, for any j, o ∈ Cit we know that the difference in

conditional value functions can be written as

vjit (zit)− voit (zit) = ln

(
pjit (zit)

poit (zit)

)
(26)

Alternatively, we can write the conditional value function as the expected value of the sum

of current and future flow payoffs conditional on optimal behavior. This representation is

presented in Proposition 1

Proposition 1. Let V (zit, εit) be the value function for individual i at period t who has a

state given by zit and εit. Define P
o(s−1)
j as the probability of surviving until period t+ s− 1

conditional on the state at t, decision j at t, and optimal behavior, denoted doi , up to some
period T ∗ > t.16 Define ψkit (zit) ≡ Eε [εkit|doit = k, zit] as the expected value of the kth taste
shock conditional on alternative k being optimal. Finally, let γ be the Euler constant. Then,
the conditional value function can be written as

vjit(zit) = E [yjit| zit] +

T∗∑
s=1

βsP
o(s−1)
j (zit)×

Ez

Dit+s (zit+s)
∑

k∈Ct+s

pkit+s (zit+s) [ykit+s (zit+s) + ψkit+s (zit+s)]

∣∣∣∣∣∣ zit, djit = 1, Sit+s−1 = 1, doi


+βT

∗+1P
o(T∗)
j (zit)Ez [Dit+T∗+1 (zit+T∗+1)V (zit+T∗+1, εit+T∗+1)| zit, j, Sit+T∗ = 1, doi ]

(27)

and

ψkit (zit) = γ − ln (pkit (zit)) (28)

Proof: see Appendix C

We then choose a value of T ∗ high enough so that the product βT
∗+1P

o(T ∗)
j (zit) approaches

zero, eliminating remaining differences in conditional value functions. This yields our second

representation for the difference in conditional value functions

vjit(zit)− voit(zit) ≈ E[yjit − yoit|zit] + v̄jit(zit)− v̄oit(zit) (29)

16Since any individual present at t has evidently survived until t, P
o(0)
j (·) ≡ 1.
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where

v̄jit =

T∗∑
s=1

βsP
o(s−1)
j (zit)×

Ez

Dit+s (zit+s)
∑

k∈Ct+s

pkit+s (zit+s) [ykit+s (zit+s) + ψkit+s (zit+s)]

∣∣∣∣∣∣ zit, djit = 1, S
(s−1)
it = 1, doi


(30)

Let J = 6 be the maximum possible cardinality of the individual’s choice set. For every

individual at every period we have at most J − 1 differences of the form displayed in equa-

tion (29). Let w (zit) be a vector of instruments orthogonal to the difference between the

alternative representations of the difference in conditional value functions. Therefore, we

can form the following moment conditions

E

w (zit)⊗


ln
(
poit(zit)
p1it(zit)

)
+ E[y1it − yoit|zit] + v̄1it(zit)− v̄oit(zit)

...

ln
(

poit(zit)
pJ−1it(zit)

)
+ E[yJ−1it − yoit|zit] + v̄J−1it(zit)− v̄oit(zit)


 = 0 (31)

As econometricians, we observe the underlying stochastic process that gives rise to the

stochastic process of cluster characteristics that agents observe. Therefore, we compute the

expectation in equation (31) with respect to the underlying stochastic process denoted by

Pt. This is crucial for our simulation estimation method. The key fact is that we observe the

characteristics of the underlying process of product evolution and that allows us to simulate

the stochastic evolution of clusters. This procedure is valid as

E {w (zit)⊗ Ez [·]| Pt} = E {w (zit)⊗ Ez [ ·| Pt]} (32)

We simulate choices, transitions, and technology paths to obtain a version of the right hand

side of equation (29) where expectations are taken conditional on the underlying stochastic

process Pt that generates the cluster characteristics agents observe. We then form sample

analogs of the moment conditions on (31) and estimate parameters using generalized method

of moments.

4.2 Forward Simulation and Conditional Choice Probabilities

We use forward simulation to obtain an expression for the difference in conditional value

functions. A key component of our forward simulation procedure is that innovation is en-

dogenous to individuals choices. To understand how this works, begin with an individual i
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at time t with state variables Zit facing choice set Cit. Using parametric conditional choice

probabilities estimated beforehand we simulate his choice at time t. Next, using estimated

parameters for the stochastic processes governing outcomes and transition, we simulate his

state variables at t + 1. We then simulate t + 1 choices conditional on the new simulated

state and continue the same process until we reach T ∗.

Innovation is endogenous to consumer choices. Therefore, in order to simulate expecta-

tions for individual i at period t we must simulate an entire artificial technological path—that

is specific to him—and respective choices for all individuals available in period t. Implied

market shares in this simulated world determine the future simulated centroid for innovation.

Although we as econometricians know what products the underlying stochastic process

generates, individuals only observe the stochastic process of cluster characteristics. We

simulate the underlying stochastic evolution of products and obtain from there the state

variables that are relevant for consumer choices.

4.2.1 Product Characteristics and Number of New Products

We estimate product characteristics using data on individual treatment usage and subsequent

reports of health and ailments. Our estimation equations mimic equations (15) and (16),

which individuals use to form expectations over their health and ailments conditional on their

choice. The key difference between equations (15) and (16) and our estimation equations is

that here our aim is to obtain characteristics of each individual treatment.

Let δrit be an indicator that treatment r was used by individual i at time t. The charac-

teristics of treatment r are denoted

θr =
{
θxr , θ

h
r

}
∈ R2 (33)

The components of θr are estimated as the coefficients of δrit in the health and no-ailments

regressions

hit =
5∑

m=0

αhmh
m
it−1 +

∑
r

θhr δrit + εit (34)

Pr [xit = 1|·] =
exp

(∑5
m=0 α

x
mh

m
it−1 +

∑
r θ

x
r δrit

)
1 + exp (·)

(35)

Finally, the distribution of number of new products is estimated using the specification

in (22) and data on product entry. We now turn to the empirical distribution of innovations.
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4.2.2 The Distribution of Innovations

The characteristics of new products entering the market today are determined by last period’s

centroid and a draw from the distribution of innovations, Fν . This distribution, which we

assume is stationary, provides the distance of new products relative to the current centroid.

In order to construct the distribution of innovations we use all periods available in the MACS

data with relevant information on treatment consumed, health, and ailments. These data

span from 1986 to 2008. We then define centroids for innovation, ωt, given by equation (20).

For each new product at t, characterized by θ, we compute a realized innovation vector as

νθ = θ − ωt−1

There are 76 realizations from the innovation distribution which we use to obtain a nonpara-

metric empirical distribution for ν.

4.2.3 Conditional Choice Probabilities

The probability that an individual chooses one of the alternatives depends on the elements

of his state. As such, the conditional choice probabilities needed to simulate choices in

our estimation method are functions of individual-specific variables as well as market-level

variables.

Individuals decide between one of G clusters, yesterday’s product (if any), a trial product,

and no product. Let Wjit be the characteristics describing alternative j for individual i at

period t: mean health, mean ailments, and the variance matrix. Let WjitWjit denote a vector

of interactions between the elements of Wjit. Let x̃it and z̃it be subsets of the individual-

specific components of the state.17 Let ωtWjit denote a vector of interactions between the

centroid and the elements of Wjit. Similarly, let Wjitz̃it be a vector of interactions between

the components of Wjit and individual-specific state components and let ωtWjitz̃it be defined

in a similar fashion. Finally, let F̃t denote a set of non parametric moments describing the

joint distribution of aggregate characteristics, Ft.18

For each of the alternatives, the conditional choice probabilities (ccps) are expressed as

follows:

17z̃it includes hit−1, ait−1, bi, lit while x̃it includes a constant, ait−1, bi.
18We specify these moments as shares of people with different sets of characteristics.
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Cluster ccps (j = 1, . . . ,G)

pjit =
exp

(
γ0x̃it + β0Wjit + β1WjitWjit + β2ωtWjit + β3Wjitz̃it + β4ωtWjitz̃it + β5WjitF̃t

)
1 +

∑G+2
k=1 exp (·)

(36)

γ0 is constant across clusters and over time. For a given cluster j and period t, Wjit is in

fact constant across individuals so Wjit = Wjt.

Trial ccps (j = G + 1)

pjit =
exp

(
γj x̃it + β0Wjit + β1WjitWjit + β3Wjitz̃it + β5WjitF̃t

)
1 +

∑G+2
k=1 exp (·)

(37)

For the trial alternative, Wjit is constant across individuals so WG+1it = WG+1t. In fact, two

of the components of Wjt are ωt−1 +µν , where µν is the mean of the innovations distribution.

Therefore, to avoid collinearity we do not include terms ωtWjt and ωtWjtz̃it in the trials ccps.

Staying ccps (j = G + 2)

pjit =
exp

(
γj x̃it + β0Wjit + β1WjitWjit + β2ωtWjit + β3Wjitz̃it + β4ωtWjitz̃it + β5WjitF̃t

)
1 +

∑G+2
k=1 exp (·)

(38)

When individuals choose to stick to their previous product WG+1it becomes heterogeneous—

individuals may have consumed different products last period.

No product ccps (j = 0)

pjit = 1−
G+2∑
k=1

pkit (39)

Even though the characteristics of the choice set are non stationary, by interacting our

time-varying regressors z̃it with the characteristics of the choice for individual i, Wjit, we are

able to control for the state of the world inside the ccps. As a consequence of this we do

not have to run period-specific logits and we can have ccps for any simulated world as long

as our observed worlds cover the space of possible worlds reasonably well. We also include

parameters that are invariant to the state of the technology, γ, which capture stationary

taste differences between staying in current choice, trying a new market product, going to a

trial, or not consuming anything. Also, since all clusters correspond to the action of “trying

a market product” we impose γj = γj′ = γ0 for any j, j′ = 1, . . . ,G.
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5 Parameter Estimates and Choice Dynamics

In this section, we discuss estimates of the structural model. We organize our discussion

around the key factors driving choices. First, individuals form beliefs about the distribution

of innovations (Section 5.1). Second, they obtain flow utility (Section 5.2). Third, they

consider how each treatment implies a different distribution over outcomes and future states

(Section 5.3). Taken together, we can then use the model to simulate choices over time,

which allows us to assess model fit. (Section 5.4).

5.1 The Distributions of Innovations and New Products

In our model, every new product is an innovation about the centroid. How far new products

land from the centroid is stochastically given by the distribution of innovations, Fν . Using

equation (21) and estimated product characteristics we can back out the innovation implied

by each product as the difference between its characteristics and the centroid.

Figure 5 shows our non parametric estimate of Fν . The distribution of innovations is

bimodal and it does not appear to be well approximated by a standard parametric distri-

bution. One of the modes is located approximately at the status quo point (0, 0). A second

mode is located north of the first mode along the health axis into the region where changes

on health quality are positive. This yields a distribution that has a positive mean in terms

of health quality and a mean that is approximately zero for no-ailments quality.

The estimated distribution of innovations suggests that, if draws were random, on aver-

age products would improve over time in terms of health quality but would remain largely

unchanged in terms of no-ailments quality. In our model, however, the moments of the

innovations distribution interact with consumer demand to shape the path of technology.

Future products are drawn more often from parts of the distribution where market shares

are larger, which could shift the path of innovation. In this sense, innovation is endogenous

to market shares, themselves a function of optimal consumer choices.

Estimates for the distribution of number of new products are shown in Table 3. Results

show that the magnitude of previous innovations increases the likelihood that more new

products enter market. Further, estimates mean that large positive innovations are likely

to be followed by the appearance of a multitude of products, which is consistent with firms

vying for market share following a breakthrough. The magnitude of previous innovations

also reduce sthe dispersion around the number of new products that enter. The share of

consumers opting for the trial product in the prior period also increases the likelihood of more

products entering the market. The reason is that, as more consumers select trial products.
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firms have more room for experimentations which provides them with valuable information

about the viability of new treatments that they can now introduce into the market more

rapidly. The fit of our distribution of new products is shown in Figure 6. It shows that the

empirical distribution is not far from the average over time of the predicted probabilities

generated by the model.

5.2 Utility Parameter Estimates

Utility parameters are reported in Table 4. Recall, we interact patient socio-demographic

and health characteristics with the utility they gain from each treatment choice, where

choices include drawing from a cluster, entering a trial or staying on the current treatment

(where there is no uncertainty about product quality. These interactions help to explain

heterogeneity in choices across groups that are not attributable to variation in continuation

payoffs. In interpreting parameter estimates, note that the utility from no treatment is

normalized to zero across groups. Therefore, parameter estimates govern period utility for

different groups relative to what they gain from taking no treatment.

According to parameter estimates clusters and trials lead to a utility cost and, generally,

these penalties are higher for non-white patients. Black men face a particularly high penalty

of trial participation, a finding that is consistent with a broad literature investigating his-

torical reasons why blacks are reluctant to enter trials to use experimental drugs. Moreover,

healthier individuals have a lower utility of treatments where they face uncertainty, including

clusters or in trials. Interestingly, healthier individuals gain utility from using drugs they

have used before. These results suggest that healthier individuals dislike uncertainty about

drugs and, perhaps, switching costs relative to their less healthy counterparts. We also find

that the utility costs of treatment relative to no treatment are stronger for younger individ-

uals. This is perhaps reflective of age-dependent tolerance for medication, especially if older

individuals have grown accustomed to using medications for other health problems.

Finally, individuals dislike ailments regardless of which product they are using. This

utility parameter is key as it explains why individuals eschew medications that have high

dynamic payoffs in the form of better future health. This finding is consistent with Chan

and Hamilton (2006) and Papageorge (2016) in the context of HIV, which has demonstrated

that even in the context of a deadly infection, individual treatment choices reflect a distaste

for side effects. Finally, the utility function shows that individuals gain positive utility from

income, which reflects consumption utility and is expected.
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5.3 Transitions and Outcomes

Next, we discuss the processes describing how state variables produce outcomes or transi-

tions to other states. The quality of any product r, θr, has two dimensions: health, which

we estimate using equation (16), and no-ailments, which we estimate using equation (15).

Estimated product characteristics are product-specific coefficients in these regressions. To

conserve on space, we present coefficient estimates in Tables S5 and S6, found in Appendix

D (see Column 5 in both tables). These are the coefficients that patients take into account

when deciding among treatment options. However, We can also see how product quality

evolves over time in Figure 4.

Individuals in our model care not only about health and ailments but also about a

number of other outcomes which are affected by them: income, out-of-pocket payments,

labor, and survival. Tables 5 presents our results for the income equation. Income increases

with health. Moreover, individuals who do not suffer ailments also have higher income as

their productivity is likely to be higher. Minorities have lower income. Income is concave

in age and it increases with labor participation and education. At any period individuals

may incur in out-of-pocket payments not uniquely related to their treatment consumption

decision. According to Table 6, conditional on having out-of-pocket expenditures, these

payments increase with age. Minorities spend less and more educated people spend more.

Similarly, individuals that suffer ailments spend more, perhaps because they are managing

other health conditions. Even with heavy subsidization in the HIV treatments market,

individuals wanting to consume must still pay part of the cost and this is reflected in higher

expected payments. Labor market participation increases expected payments, which may

reflect different pricing schemes for public versus private insurance.

Labor participation is stochastic in our model and it is revealed to individuals at the

beginning of the period. Estimates in Table 7 shows that the log odds ratio of working

versus not working increases with age until about age 40 and then decreases. Odds of

working increase with education and it increases substantially if the individual had worked

the previous period. At the end of every period individuals face the possibility of death.

Estimates in Table 8 imply that the log odds ratio of death versus survival decreases with

age until about age 35 and then increases. The likelihood of death is smaller for black

individuals and for individuals who are not suffering ailments.

Health plays a major role in our model and also exhibits strongly non-linear relationships

with other outcomes, which help to explain differences in optimal choice for individuals with

somewhat similar health profiles (as measured by CD4 count). Therefore, in presenting

results on outcomes, we show how they relate to health according to model estimates. In
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particular, in Figure 7, we plot the relationship between health and several outcomes: income,

out-of-pocket payments, labor supply and survival. According to the figure, income increases

steeply with CD4 count for very sick individuals but the effect of health flattens substantially

for individuals with CD4 counts above 250. The health profile of out-of-pocket payments

in Figure 7 is the mirror image of the health profile for income with deeper decreases in

payments as health increases for the sickest. This makes sense as health expenditures due

to opportunistic infections, for example, would be expected to decline precipitously as a

result of small health increases at low health levels. Similarly, the odds of working increases

with health until a CD4 count of about 350 units and then it flattens. Finally, the effect of

health increases on survival are more dramatic the more sick individuals are. Even though

the positive impact of health on survival remains at higher health levels, this relationship

diminishes considerably after a CD4 count of about 250 units.

In general, the health profiles in Figure 7 tell a very consistent story about CD4 count

and HIV infection. The effect of marginal health increases on outcomes is much stronger

for individuals with low CD4 counts and it seems to flatten after individuals surpass well-

known cutoffs below which AIDS occurs. This is consistent with the idea that lower CD4

counts have little discernible impact on symptoms or survival until the AIDS threshold is

reached. Below that threshold, further reductions have large effects on outcomes since the

body’s immune system becomes increasingly compromised and is therefore unable to fight

off routine infections. These results highlight how it is not appropriate to model health as

having a linear effect on outcomes in the context of HIV. Rather, CD4 count matters insofar

as it affects outcomes, which is most likely to happen at very low levels.

5.4 Simulated Choice Dynamics and Model Fit

In Figure 8, we plot observed treatment choices over time along with those generated by

the model. Note that ccp estimation fit is discussed in Appendix B. In general, we are

able to capture basic trends, including the rise in treatment usage as drugs improve through

innovation. We also capture trials participation dynamics fairly well. The model does

not do a very good job of reproducing the spike in participation shortly before HAART

introduction. The reason is that the model only accounts for changes in the demand for

trials, which occurred if individuals anticipated an innovation for which they sought early

access. However, demand shifts are only one part of the story; there was also a shift in

the supply of trials as a number of new drugs were tested that would eventually comprise

HAART. If so, the spike in participation and would not be fully captured by the our model
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that focuses on patient demand.19 Beyond this spike, however, our model can capture the

main contours of choice dynamics.

6 Counterfactual Policy Simulations

In this section, we discuss counterfactual policy simulations. The policies we evaluate center

around demand externalities. In our framework, the observed path of innovations can be

viewed as a draw from a distribution of innovations, itself a function of optimal consumer

choices. This feature of our model means that we can explicitly relate optimal choices to the

distribution of innovations. In this section, we begin by illustrating how the model we esti-

mate generates a distribution of innovations at each point in time. This means we can assess

the probability of the observed path of innovations and ask, for example, whether the ob-

served path included tail events (Section 6.1). Having established that our model generates a

distribution of possible innovations, we go on to discuss how different kinds of choice dynam-

ics would influence the distribution. We demonstrate that alternative market shares could

speed or slow the development of technologies that potentially increase social welfare (Sec-

tion 6.2). This naturally leads to a discussion of policies that could raise consumer welfare

by subsidizing some choices over others. We focus on the idea policies affecting consumption

choices could potentially solve a coordination problem whereby consumers under-experiment

and therefore slow the progress of technology (Section 6.3). As we show, though it may be

individually rational to underuse such technologies, the question arises whether it is socially

optimal to induce all consumers to use technologies that spur innovation.

6.1 The Distribution of Technology Paths

Imbedded in our estimation procedure is the simulation of different innovation paths. Alter-

native paths are drawn from the same innovation distribution from which the realized path

is drawn. This means that we can assess the realized path of distributions in comparison to

the full distribution of paths. In particular, we take the 1990 distribution of state variables

as given and then simulate technology, choices and state variables for 18 years. We do so

again for the 1997 distribution of state variables. For each simulated period, previous period

market shares and the current distribution of technology are used to simulate draws of new

19In a companion paper, we model supply of trials more explicitly and demonstrate the the increase in trials
prior to the introduction of HAART in part explains the observed spike in the likelihood of participation.
In the current framework, we could model supply shifts in a reduced-form manner as a temporary decrease
in the utility cost of joining a trial, which would reflect the ease of finding a trial in which to participate.
We abstract from supply here, however, since the focus of our model is on demand shifts and innovation.
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products. Consumers optimally choose from among existing new products, which generates

one-period-ahead market shares and also a probability distribution over one-period-ahead

states, from which we draw transitions. This leaves is with a one-period ahead set of con-

sumers and products and the process is repeated. We plot the simulated distribution of

outcomes across time and then compare it do the data.

First, we consider aggregate health and the health centroid if we begin the simulation in

either 1990, prior to HAART introduction, and in 1997, once HAART has been introduced.

Results are plotted in Figure 9, where the green line is the realized path, the black line is the

mean simulated path and the dotted lines are confidence intervals. Considering the plots on

the left, where the simulation begins in 1990, it is clear that HAART introduction was a tail

event. The observed path of innovations follows the simulated paths quite well until 1996.

Thereafter, the health centroid, which summarizes effectiveness of market drugs, along with

aggregate health of consumers in the market is far above what would have been expected.

Between the years 1996 and 2000, the realized path of the centroid is outside of the 95-percent

confidence interval. Interestingly, the expected centroid approaches the realized centroid as

time goes on. This means that the gradual progress of technology would have eventually

been expected to improve drug effectiveness until something nearly as good as HAART

would have come along, though far later than it actually did. Looking at the right side of

Figure 9, where the simulation begins in 1997, notice that the realized path underperforms

the average simulated path. This means that technology, measured by effectiveness, was

expected to improve more than it did from the perspective of 1997.

In Figure, 10, we perform a similar analysis for the other product quality: lack of side

effects. Here, realized product quality (measured by the centroid and by aggregate outcomes)

seems to have underperformed what would have been expected from the distribution of

innovations. In fact, one of the disappointments with regard to HAART is that its side

effects were quite harsh, which led many HIV+ men to avoid using it despite its effectiveness

(Papageorge, 2016). In Figures 11, we consider survival and consumption. The results on

both match those on health: HAART introduction was a tail event, which increased survival

and product consumption. Finally, in Figure 12, we compare simulated paths with the

realized path, considering product entry and exit. We under-estimate number of product.

When HAART is introduced, there is a huge number of new entries (tail event). Afterwards,

we find that new products beget new products, so that even though the rate is in line with

simulations, the total number is too low. Note, our under-estimation of entry does not mean

that our model is a poor fit. In fact, it this shows that our model is successful at treating

breakthroughs (and subsequent entry of products and behavior of firms) as tail events.
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6.2 Demand Pull: How Consumer Choices Affect Innovation

Findings from this section demonstrate that a policy that changes consumer choices will affect

the path of innovation. Notice, this means that there are demand externalities and that a

social planner could improve welfare, which we discuss next. Here, we consider technology

and aggregate outcomes under different choice policies. In the first, individuals are dynamic

optimizers. In the second, the are myopic. In the third, choice is random.

In Figure 13, we consider average health and ailments under each regime (left-hand-side

plots) and centroid health and ailments. In Figure 14, we consider average survival, number

of consumers, entry and exit under the different choice regimes. Consider average health. It

rises if agents choose products randomly. This means that individuals under-use products

that would improve technology and lead to higher average health in the future. This can by

seen with the health centroid in the right-hand-side panel. The likelihood of no ailments,

however, is lower in the static model. This may seem puzzling since consumers in the static

model only care about side effects. This finding reflects how improved health affects ailments

in the following period, not through side effects, but from fewer symptoms. Therefore, if

agents are myopic and only care about side effects in the current period, they still end up

with more ailments in the future since their health does not improve. Similar to health,

survival (Figure 14) is higher if products are chosen randomly. In general, these results

suggest that dynamic payoffs would rise through technology improvements under a choice

policy that is not necessarily consistent with dynamic optimization. We turn to a discussion

of welfare and alternative choice probabilities next.

6.3 Demand Externalities and the Social Planner’s Problem

Results in the previous section point to a choice externality whereby individually rational

optimal choices slow the path of technological progress. This might mean that there is a

coordination failure. Here, we ask whether the social planner can raise welfare by imposing

an alternative choice probability that speeds the progress or that changes the direction of

innovation.

[To Be Added]

7 Conclusion

[To Be Added]
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8 Figures and Tables

Table 1: Summary Statistics: Subjects. Visit 14-47 (1990-2007)

Analytic Sample Obs Full Sample Obs
Black 0.22 1719 0.22 2420
Hispanic 0.09 1719 0.1 2420
White 0.68 1719 0.61 2420
High School 0.14 1719 0.19 2402
Some College 0.29 1719 0.3 2402
College 0.34 1719 0.31 2402
Grad 0.23 1719 0.20 2402
Died 0.40 1719 0.42 2420
Died Conditional 0.20 1185 0.24 1782
Ever Market Product 0.83 1719 0.83 2121
Ever Trial Product 0.24 1719 0.25 2121
Ever Work 0.74 1719 0.72 2304
Ever Not Work 0.68 1719 0.75 2304
Age 1991 36.04 1719 34.86 2406

[8.72] [9.59]

Notes: Standard deviation in square brackets. Data for unique individuals. Ever Market Product stands for ever
consumed a market product during the period from visit 14 to visit 47. Similar definition holds for Ever Trial
Product. Died Conditional is the proportion of individuals who died conditional on surviving until year 1995.

Table 2: Summary Statistics: Subjects-Visits. Visits 14-47 (1990-2007)

Analytic Sample Pre Haart Post Haart
Obs 16851 6972 9879
Ailments 0.43 0.45 0.41
Market Product 0.65 0.49 0.76
Trial Product 0.07 0.09 0.05
Work 0.63 0.70 0.58
Age 44.48 40.89 47.01

[8.03] [6.99] [7.75]
CD4 475 407 524

[297] [298] [287]
Gross Income 17567 19036 16531

[8787] [8733] [8677]
Out-of-pocket Pay 266 179 327

[706] [598] [767]

Notes: Standard deviation in square brackets. Income and Out-of-pocket are semestral and measured in real dollars
of 2000. Pre HAART era corresponds to visit <= 24 or (roughly) year <= 1995.

38



Table 3: Distribution of Number of New Products, FN

coef. se
µ

MaxChanget−1 0.432 0.246
TrialsSharet−1 6.177 2.462

lnα
Constant -0.206 0.451

MaxChanget−1 -1.019 0.626
Notes: Model specified in (22). The variable MaxChanget−1 measures the distance between the previous period’s
new products and the previous period’s centroid. It captures the relatively higher number of new products that
follow the appearance of better innovations. The variable TrialsSharet−1 is the share of individuals going into a
trial the previous period. According to the model in (22), E[Newt] = µ and V ar[Newt] = µ(1 + αµ).

Table 4: Utility Parameters, yit

parameter variable coef. se
α4w 1{cluster} · white -1.385 0.206
α4b 1{cluster} · black -1.868 0.210
α4l 1{cluster} · hispanic -1.075 0.835
α4a 1{cluster} · ait−1 0.003 0.005
α4h 1{cluster} · hit−1/103 -3.385 0.134
α5w 1{trial} · white -2.678 0.168
α5b 1{trial} · black -3.755 0.170
α5l 1{trial} · hispanic -2.902 0.354
α5a 1{trial} · ait−1 0.051 0.003
α5h 1{trial} · hit−1/103 -1.702 0.082
α6w 1{stay} · white 0.525 0.157
α6b 1{stay} · black 0.396 0.159
α6l 1{stay} · hispanic 0.480 0.674
α6a 1{stay} · ait−1 0.019 0.003
α6h 1{stay} · hit−1/103 1.048 0.101
αx xit 0.522 0.292
αxp xit · 1{product} -3.575 0.226
αm mit − oit 0.141 0.023

Notes: Estimation of equation (9). Discount factor β = .8. 1{cluster} indicates whether the individual chose one
of the three clusters of products available. 1{product} indicates whether the individual consumes a product in t,
1{product} = 1{cluster}+ 1{stay}+ 1{trial}.
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Table 5: Gross Income, mit

variable coef. se
hit−1 0.018 0.004

h2
it−1/103 -0.064 0.019
h3
it−1/107 1.138 0.381

h4
it−1/1010 -1.030 0.381
h5
it−1/1014 4.854 1.950
h6
it−1/1018 -11.270 4.850
h7
it−1/1020 0.101 0.046
ait−1 0.482 0.114
a2
it−1 -0.006 0.001

black -5.534 0.366
hispanic -4.167 0.570

some college 2.497 0.442
college 5.812 0.457

more than college 8.203 0.500
lit 5.738 0.220
xit 0.207 0.084

constant -2.095 2.620
Notes: Estimation of equation (11). Random effects regression of gross-income on covariates. mit is measured in
thousands of real dollars of 2000. Health is given by the CD4 count measured in hundreds of cells per microliter.
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Table 6: Tobit Model for Out-of-pocket Payments, oit

variable coef. se
hit−1 -0.002 0.000

h2
it−1/103 0.009 0.002
h3
it−1/107 -0.133 0.029

h4
it−1/1010 0.090 0.022
h5
it−1/1014 -0.266 0.071
h6
it−1/1018 0.279 0.083
ait−1 0.037 0.007
a2
it−1 0.000 0.000

black -0.240 0.021
hispanic -0.119 0.025

some college 0.169 0.026
college 0.318 0.033

more than college 0.336 0.030
market product 0.429 0.026
trial product 0.313 0.043

lit 0.105 0.016
xit -0.122 0.017

constant -1.459 0.182

σo 0.862 0.066
Notes: Estimation of equation (12). market product =

∑4
k=1 dkit. oit is measured on thousands of real dollars of

2000. Health is given by the CD4 count measured in hundreds of cells per microliter.

Table 7: Logit Model for Labor Supply, lit

variable coef. se
hit−1 0.009 0.001

h2
it−1/103 -0.013 0.002
h3
it−1/107 0.075 0.023

h4
it−1/1010 -0.013 0.007
ait−1 0.102 0.032
a2
it−1 -0.001 0.000

black -0.168 0.073
hispanic -0.040 0.125

some college 0.312 0.105
college 0.537 0.103

more than college 0.613 0.108
lit−1 4.458 0.056

constant -5.914 0.742
Notes: Estimation of equation (13). Health is given by the CD4 count measured in hundreds of cells per microliter.
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Table 8: Logit model for Death, 1− Sit+1

variable coef. se
hit−1 -0.028 0.003

h2
it−1/103 0.079 0.015
h3
it−1/107 -1.104 0.292

h4
it−1/1010 0.704 0.220
h5
it−1/1014 -1.610 0.561
ait−1 -0.116 0.058
a2
it−1 0.002 0.001

black -0.509 0.199
hispanic 0.034 0.235

some college 0.060 0.185
college -0.353 0.185

more than college -0.512 0.207
xit -1.140 0.159

constant 1.682 1.358
Notes: Estimation of equation (17). Health is given by the CD4 count measured in hundreds of cells per microliter.
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(a) (b)

(c) (d)

Figure 1: Summary trends over time. Panel 1(a): Death probability over time. Panel
1(b): Mean CD4 over time by consumption status. Panel 1(c): Market treatment con-
sumption over time. Panel 1(d): Mean out-of-pocket payments over time.

43



(a) (b)

(c) (d)

Figure 2: Summary trends over time. Panel 2(a): Treatment usage by CD4 over time.
Panel 2(b): Mean ailments over time. Panel 2(c): Trial participation over time. Panel
2(d): Trial participation by CD4 over time.
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Figure 3: Diffusion of Products Over Time

Notes: Each id—or row—represents a product. Color indicates the share of the market that the product captures.
Shares are conditional on consuming a product.
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Figure 4: Treatment Evolution

Notes: Figure shows the evolution of the market of HIV treatments. Every product is identified by its characteristics,
θ, in the health and no-ailments axises.
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Figure 6: Distribution of Number of New Products

Notes: Model specified in (22). Figure shows the empirical distribution of new products and the average over time
of the predicted probabilities using the estimated parameters in Table 3.
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Figure 7: Health Effect on Outcomes

Notes: Semestral income measured in thousands of dollars of 2000. CD4 Count measured in hundreds of cells per
microliter. LOR stands for log odds ratio.
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Figure 8: Goodness of Fit Figures

Notes: Simulated and empirical choice rates over time.
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Figure 9: Distribution of Technology Paths: Health

Notes: statistics computed over 1000 simulated paths conditional on the state of the world at 1991 and 1997.
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Figure 10: Distribution of Technology Paths: No Ailments

Notes: statistics computed over 1000 simulated paths conditional on the state of the world at 1991 and 1997.
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Figure 11: Distribution of Technology Paths: Survival and Product Consumption

Notes: statistics computed over 1000 simulated paths conditional on the state of the world at 1991 and 1997.
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Figure 12: Distribution of Technology Paths: Entry and Exit

Notes: statistics computed over 1000 simulated paths conditional on the state of the world at 1991 and 1997.
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Figure 13: Alternative Choice Regimes: Health and No Ailments

Notes: Alternative choice regimes are: (i) optimal dynamic choice, (ii) static optimal choice, and (iii) random choice.
Mean over 1000 simulated paths of the relevant statistic conditional on the state of the world at 1991 and 1997.
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Figure 14: Alternative Choice Regimes: Survival, Consumption, Entry, and Exit

Notes: Alternative choice regimes are: (i) optimal dynamic choice, (ii) static optimal choice, and (iii) random choice.
Mean over 1000 simulated paths of the relevant statistic conditional on the state of the world at 1991 and 1997.
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A Data Appendix

Beginning in 1984, the Multi-Center AIDS Cohort Study (MACS) started gathering infor-

mation regarding natural and treated histories of HIV infection in homosexual and bisexual

men. The study is conducted in Baltimore, Chicago, Pittsburgh and Los Angeles. At each

semi-annual visit, data are collected on: demographics, psychosocial characteristics, sexual

behavior, and specially important for our purposes, antiretroviral (AV henceforth) drugs

consumption and trial participation. In addition, blood tests are administered to measure

health status and serostatus (whether the individual is HIV+). Data collection started with

4,954 men enrolled. Two more enrollments have taken place: one in 1987-1991 (668 addi-

tional men) and another in 2001-2003 (1,350 additional men). We only use data from the

first two enrollments.

A.1 Main Variables

Health (hit−1): At every visit individuals go through a physical examination in which several

health measurements are taken. As our measure of underlying health status, we use the

CD4 count obtained from a blood sample. “CD4 is a glycoprotein found on the surface of

immune cells [...]. If CD4 cells become depleted, for example in untreated HIV infection, or

following immune suppression prior to a transplant, the body is left vulnerable to a wide

range of infections that it would otherwise have been able to fight. [...] Normal blood values

are usually expressed as the number of cells per microliter (or cubic millimeter, mm3) of

blood, with normal values for CD4 cells being 500-1200 cells/mm” (Wikipedia). We denote

as hit−1 the CD4 count at of the individual at the start of period t.

Labor supply (lit−1): Whether the individual was working full time (35 hours or more) in

visit t.

Income (mjit): Starting at visit 14, individuals answer the following question: “Which of

the following categories describes your annual individual gross income before taxes”? For

visit 14, categories are: less than 10000, 10000-19999, 20000-29999, 30000-39999, 40000-

49999, 50000-59999, 60000-69999, 70000 or more, Doesn’t wish to answer. For visits 15 to

35, categories are: less than 10000, 10000-19999, 20000-29999, 30000-39999, 40000-49999,

50000 or more, Doesn’t wish to answer. For visits 36 to 41, categories are: less than 10000,

10000-19999, 20000-29999, 30000-39999, 40000-49999, 50000-99999, 60000 or more, Doesn’t

wish to answer.

We censor all periods at 50000 or more to obtain a uniform question over time. Then

we assign the middle point to individuals in the bracket. For the highest bracket we assign
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the upper limit (50000). In our model gross income is divided by two since the survey

asks about annual income. Gross income as well as out-of-pocket payments (below) are in

constant dollars of 2000.

Out-of-pocket payments (ojit): Starting from visit 14, individuals are given the following di-

rection “Please estimate the TOTAL out-of-pocket expenses that you or other personal

sources (your lover, family or friends) paid for prescription medications since your last

visit.”20 As opposed to the gross income question, this question is open so values are not

categorized.

Ailments (xjit): Starting from at visit 4, individuals are asked about physical symptoms.

Even though other ailments are recorded, we focus on unusual bruises lasting at least two

weeks, unintentional weight loss of at least 10 pounds, fatigue, diarrhea, fever, night sweats,

and tender/enlarged glands. The last 5 ailments must be felt for at least 3 days.

Even though individuals are asked explicitly about side effects starting from visit 13, we

choose not to use such data because it is less consistent and, more importantly, because we do

not think individuals are able to differentiate correctly between side effects and symptoms.

Therefore, in our model xit takes the value of 1 if individual reports having any of the

problems mentioned above.

Race (bi): Individuals in the sample are either white, black or hispanic.

Age (ait): Age of the individual at the beginning of period t.

A.2 Products and Product Components

At every visit after visit 6, individuals are asked whether they took any medication to

fight AIDS. Starting from visit 13, as the number of medications becoming available for

HIV exploded, separate surveys were administered for antiretroviral drugs (ARVs) and non

antiretroviral drugs (NARVs). We focus on ARVs since these are the drugs used to treat HIV

infection. Further, since our analysis includes estimating the health and ailments of people

using different drugs, we focus on observations where individuals have reported a treatment

along with hit, hit−1, and xit.

Individuals are asked to name specifically which drugs they took as well as whether or not

they took the drug as part of a research study (the exact wording of the question regarding

research studies changes slightly over time). Some of the reported drugs are themselves

coded as trials; we regard these instances as individuals participating in trials (see Table

S1). If at individual i at period t is consuming one of his drugs as part of a trial we regard

20Wording changes slightly in visits 14 and 15.
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individual i as consuming a trial product at period t.

Next, we define market products as treatments with no components consumed in trial.

Given that the sum of effects of individual drugs is not equal to the effect of a treatment

formed by the sum of the drugs, the relevant market products consumed in our data corre-

spond to combinations of components. For instance a product is AZT and another is AZT

plus 3TC plus ddI. Table S2 describes the individual components of market products. Some

components, listed separately in Table S3, are in fact fixed-dose combinations of other com-

ponents. In our sample, if individual i is consuming the fixed-dose combination (A+B) and

individual i′ is consuming components A and B, we assign consumers i and i′ to the same

treatment. One of the coded components in the data corresponds to “other ARVs”. We

add all uncoded components (96 instances) to “other ARVs” which results in 158 instances

of “other ARVs”. Finally, we treat α and β Interferons (177 instances and 33 instances,

respectively) as one single component.

Our definition of market products, as combinations of drug components, generates 1835

different market treatments. We reduce the number of market products using the following

algorithm:

1. We select our core market products as those treatments that overall have more than

40 instances.21 We acknowledge that our definition of core treatments is biased against

treatments appearing near the end of the time period studied. We address this issue by

excluding the last 4 periods of data. Our core treatments are listed in Table S4 which

shows that there are 70 core products overall and they have at most five components.

Out of 20142 subject-visit observations of consumers taking market products, 13767

are covered by core treatments and 6375 correspond to non-core treatments.

2. Second, we assign non-core treatments to core treatments in the following fashion.

Each step is used sequentially to assign remaining non core treatments that were not

assigned in previous steps.

(a) Assignment of Non-core: Non core treatment A is assigned to core treatment B if

B is the core treatment with the highest number of components that is contained

by A. This procedure yields both non-unique assignments or null assignments.

Of the remaining 6375 subject-visit observations of non core treatments, 2963 are

assigned uniquely in this step. This means that we are left with 3412 subject-visit

observations with non core treatments, 1647 that are assigned to multiple core

treatments and 1765 that are not assigned to any core treatment.

21We can change this to a different number and main results remain robust.
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(b) Assignment of Multiple Assignments:

i. First, we use the past history of the individual. If at period t individual i is

consuming non core treatment W that was assigned to both core treatments

A and B in previous steps, and he was observed consuming core treatment A

in period t− 1, then his treatment at t is assigned uniquely as A. We repeat

this procedure until no further gains are obtained. Out of the remaining 1647

subject-visit observations of non core treatments with multiple assignments,

428 are assigned uniquely in this step.

ii. Second, we use the future history of the individual. If at period t individual i

is consuming non core treatment W that was assigned to both core treatments

A and B in previous steps, and he was observed consuming core treatment B

in period t+ 1, then his treatment at t is assigned uniquely as B. We repeat

this procedure until no further gains are obtained. Out of the remaining 1219

subject-visit observations of non core treatments with multiple assignments,

274 are assigned uniquely in this step.

iii. Third, we assign the reaming 945 subject-visit observations of non core treat-

ments with multiple assignments using the core treatment with the highest

share at t: if at period t individual i is consuming non core treatment W

that was assigned to both core treatments A and B in previous steps, and

treatment A’s market share at t is greater than B’s, his treatment at t is

assigned uniquely as A. This final step assigns uniquely the remaining 945

observations.

(c) Next, we regard all 1765 not assigned treatment observations as “fringe” treat-

ments since they do not contain any core treatment. We aggregate them in the

following fashion. We aggregate all fringe treatments that appear at period t and

assign to this “cohort” fringe treatment, all users consuming this product over

time. Similarly as we do with core treatments, we only consider fringe cohort

treatments that have at least 40 users. This reduces the number of observations

by 345 (which represents 1.6% of the number of observations of treatment con-

sumers). This aggregations leads to 17 fringe cohort treatments that we will treat

in the same way we treat core treatments: as innovations from the trials distribu-

tion. This amounts to a total of 87 treatments over all. From this point on fringe

treatments are included in the denomination of core treatments.

3. We have specified that a treatment gets withdrawn from the market if it has zero share

for X = 2 consecutive periods. However, in the data, a treatment may have zero share
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for Y > X periods and then reappear again. 78 out of 87 core treatments have unique

spells; we regard the remaining treatments with multiple spells as measurement error

and follow the next procedure to ensure that treatments have one single spell from

entry to exit. Consider a core treatment with multiple spells B.

(a) We identify all spells that treatment B has in the data.

(b) Among treatment B’s spells, we select the spell that contains the period in which

treatment B’s share was the highest. We drop all observations of market con-

sumers of treatment B that are not in this spell.

(c) We follow the same steps for all 9 core treatments with multiple spells. Out

of 19797 (20142 − 345) subject-visit observations of consumers taking market

products, this smoothing procedure drops 42 observations leaving 19755 subject-

visit observations of consumers taking market products.

As evidence of the relevance of the spells selected by this procedure we compute the

difference between the maximum share in the selected spell and the maximum share in each

of the other spells, as a percentage of the maximum share in the other spell. The mean

value of this measure is 2401, which suggests that the maximum share in the selected spell

is on average about 24 times larger that the maximum share in other spells. We also try

the following criteria: (i) selecting the spell with the highest average share and (ii) selecting

the spell with the highest sum of shares. All criteria result in closely similar entry and exit

dates so we stick to the maximum-share criteria.

Appendix Table S1: Trial Components

Name Observations
AZT/ddI Blinded Trial 91
AZT/ddC Blinded Trial 69
ddI/ddC Blinded Trial 6
AZT/ddI/ddC Blinded Trial 31
AZT/d4T trial 4
AZT/3-TC Blinded Trial 23
AZT/ddI/protease inhibitor Blinded Trial 1
AZT/protease inhibitor Blinded Trial 2
d4T/protease inhibitor Blinded Trial 1
AZT/3-TC/protease inhibitor Blinded Trial 1
Combivir/Trizivir Blinded Trial 5
Trizivir + Sustiva/Combivir + Sustiva Blinded Trial 3
Generic AIDS Vaccine Trial 1
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Appendix Table S2: Chemical Formulae of Product Components

Component Chemical Formula Observations
Isoprinosine C52H78N10O17 87
Ribavirin C8H12N4O5 62
Interferons (α and β) 210
Foscarnet CH3O5P 92
AZT C10H13N5O4 7436
ddC C9H13N3O3 1123
AL-721 egg lecithin 147
Dextran-Sulfate H(C6H10O5)xOH 65
Acyclovir C8H11N5O3 2550
ddI C10H12N4O3 3069
d4T C10H12N2O4 3807
Nevirapine C15H14N4O 2210
Delavirdine C22H28N6O3S 176
3TC C8H11N3O3S 5250
Saquinavir C38H50N6O5 1279
Ritonavir C37H48N6O5S2 3230
Indinavir C36H47N5O4 2255
Nelfinavir C32H45N3O4S 1278
Kaletra C37H48N4O5 1883
Abacavir C14H18N6O 1549
Agenerase C25H35N3O6S 372
Efavirenz C14H9CIF3NO2 3362
Adefovir C8H12N5O4P 44
Enfuvirtide (T-20) C204H301N51O64 160
Tenofovir C9H14N5O4P 2488
Emtricitabine C8H10FN3O3S 263
Atazanavir C38H52N6O7 1583
Lexiva C25H36N3O9PS 418
Etravirine C20H15BrN6O 155
Darunavir C27H37N3O7S 315
Raltegravir C20H21FN6O5 384
Ampligen Double-stranded RNA compound 25
Peptide T C35H55N9O16 30
DTC C5H10NS2Na 10
CD4 2
Other protease 31
Vistide (cidofovir) C8H14N3O6P 2
Tipranavir (PNU-140690) C5H10NS2Na 30
Other Avs 158

Notes: Source: Wikipedia (November, 2014)
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Appendix Table S3: Combination Components

Name Combination Instances
Combivir AZT + 3TC 2673
Trizivir AZT + 3TC + Abacavir 778
Truvada Emtricitabine + Tenofovir 1933
Epzicom Abacavir + 3TC 724
Atripla Efavirenz + Emtricitabine + Tenofovir 968
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Appendix Table S4: Products in the Market, Entry and Exit

Treatment Id Treatment Haart Entry (visit) Exit (visit)

3 AZT 0 6 -

13 Interferons (α and/or β), AZT 0 7 23

9 AL-721 egg lecithin 0 7 15

34 AZT, Acyclovir 0 11 32

33 Acyclovir 0 11 32

47 AZT, Acyclovir, ddI 0 12 26

51 Acyclovir, ddI 0 12 32

14 AZT, ddC 0 12 35

39 AZT, ddI 0 12 41

46 ddI 0 12 -

69 AZT, ddC, Acyclovir, ddI 0 14 26

65 AZT, ddC, Acyclovir 0 14 31

67 AZT, ddC, ddI 0 14 23

63 ddC, Acyclovir 0 14 27

64 ddC 0 14 30

85 d4T 0 18 -

117 AZT, Acyclovir, 3TC 0 21 32

124 AZT, 3TC 0 22 -

146 Acyclovir, d4T, 3TC 0 23 32

161 AZT, 3TC, Saquinavir 1 24 42

157 d4T, 3TC 0 24 -

185 AZT, 3TC, Saquinavir, Ritonavir 1 25 -

164 AZT, Acyclovir, 3TC, Indinavir 1 25 32

171 Acyclovir, d4T, 3TC, Indinavir 1 25 32

169 AZT, 3TC, Ritonavir, Indinavir 1 25 45

214 d4T, 3TC, Ritonavir, Indinavir 1 25 45

254 d4T, 3TC, Saquinavir, Ritonavir 1 25 41

202 ddI , d4T, Indinavir 1 25 41

175 d4T, 3TC, Indinavir 1 25 48

165 AZT, 3TC, Indinavir 1 25 -

242 d4T, Nevirapine, 3TC 1 26 -

236 AZT, Nevirapine, 3TC 1 26 -

268 AZT, 3TC, Nelfinavir 1 26 -

377 ddI , d4T, Nelfinavir 1 26 43

292 d4T, 3TC, Nelfinavir 1 27 -

349 ddI , d4T, Nevirapine 1 27 -

311 ddI , 3TC, Nelfinavir 1 27 -

615 ddI , d4T, Efavirenz 1 29 48

644 3TC, Abacavir, Efavirenz 1 29 -

573 AZT, Nevirapine, 3TC, Abacavir 1 30 -

720 AZT, 3TC, Abacavir, Efavirenz 1 30 -
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548 AZT, 3TC, Efavirenz 1 30 -

701 AZT, 3TC, Abacavir 0 30 -

532 d4T, 3TC, Efavirenz 1 30 44

581 Nevirapine, 3TC, Abacavir 1 31 -

782 d4T, 3TC, Kaletra 1 34 44

940 3TC, Kaletra, Abacavir 1 35 -

869 AZT, 3TC, Kaletra 1 35 -

987 AZT, 3TC, Kaletra, Abacavir 1 36 -

963 3TC, Abacavir, Efavirenz, Tenofovir 1 36 -

921 AZT, 3TC, Abacavir, Tenofovir 1 36 -

909 AZT, 3TC, Kaletra, Tenofovir 1 36 -

923 Nevirapine, 3TC, Tenofovir 1 36 46

949 3TC, Kaletra, Tenofovir 1 36 -

919 Kaletra, Efavirenz, Tenofovir 0 36 -

926 3TC, Efavirenz, Tenofovir 1 36 -

1010 AZT, 3TC, Kaletra, Abacavir, Tenofovir 1 37 -

1020 ddI , Kaletra, Tenofovir 1 37 -

976 ddI , Efavirenz, Tenofovir 1 37 -

1011 Abacavir, Efavirenz, Tenofovir 1 37 -

994 Kaletra, Abacavir, Tenofovir 1 37 -

1230 3TC, Ritonavir, Abacavir, Atazanavir 1 39 -

1071 Efavirenz, Tenofovir, Emtricitabine 1 39 -

1227 Ritonavir, Efavirenz, Tenofovir, Emtricitabine, Atazanavir 1 40 -

1245 3TC, Ritonavir, Abacavir, Tenofovir, Atazanavir 1 40 -

1303 ddI , Ritonavir, Tenofovir, Atazanavir 1 40 -

1222 Ritonavir, Tenofovir, Emtricitabine, Atazanavir 1 40 -

1128 Nevirapine, Tenofovir, Emtricitabine 1 40 -

1253 Kaletra, Tenofovir, Emtricitabine 1 41 -

1342 Ritonavir, Tenofovir, Emtricitabine, Lexiva 1 42 -

10006 0 6 16

10026 0 26 46

10027 0 27 45

10028 0 28 45

10030 1 30 43

10031 0 31 -

10035 0 35 49

10037 1 37 -

10038 0 38 -

10040 0 40 -

10041 1 41 -

10042 1 42 -

10043 1 43 -

10046 1 46 -
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10048 1 48 -

10049 1 49 -
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B Estimation Appendix

B.1 k-means Clustering Algorithm

We implement the following version of the k-means algorithm. At every period t:

1. We select the products that have not yet being applied the exit switching rule. In other

words, we select products that are still available for people to swith into at period t.

Denote this set of products available for clustering at t, At.

2. We re-scale the characteristics of all products available for clustering at t. In order to

do this we compute

θ̃r =
θr

maxδ∈At |δr|
, for r = h, x

Therefore, by construction θ̃r ∈ [−1, 1].

3. We choose the first k centroids using k initial θ̃’s in At randomly selected.

4. We allocate all remaining points in At sequentially. At each step the point selected is

the one that is closest to one of the existing clusters. This point is then allocated to

the correspondent cluster and the centroid of the cluster is updated. This process is

repeated until all points are allocated to a cluster.

5. We undertake a reallocation step in which, taken the centroids as given, all points are

allocated to their closest centroid.

6. We calculate the value of (4) for the current allocation.

7. We repeat the process 200 times using different random initial θ̃’s in At. The allocation

with the lowest value of (4) is chosen. When simulating clusters in estimation we only

repeat the process 50 times to speed up the process.

B.2 GMM Estimation Algorithm

Using the fact that we observe the underlying stochastic process that generates the stochastic
process of cluster characteristics we can write the moment condition in equation (31) can be
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written as

E



w (zit)⊗



...

ln
(
poit(zit)
pjit(zit)

)
+ EP [yjit]− EP [yoit]

+
∑T∗

s=1 β
sP

o(s−1)
j (zit)

EP

[
Dit+s (zit+s)

∑
k∈Ct+s

pkit (zit+s) [ykit+s (zit+s) + ψkit+s (zit+s)]

∣∣∣∣∣ ·, j,Pt
]

−
∑T∗

s=1 β
sP

o(s−1)
o (zit)

EP

[
Dit+s (zit+s)

∑
k∈Ct+s

pkit (zit+s) [ykit+s (zit+s) + ψkit+s (zit+s)]

∣∣∣∣∣ ·, o,Pt
]

...





= 0

(40)

Equation (40) is crucial for our simulation estimation method explained below. The key
fact is that we observe the characteristics of the underlying process of product evolution and
we are then able to use it to generate the stochastic evolution of clusters. We undertake
simulation in order to obtain the value of∑T∗

s=1 β
sP

o(s−1)
j (zit)×

Ez

[
Dit+s (zit+s)

∑
k∈Ct+s

pkit+s (zit+s) [ykit+s (zit+s) + ψkit+s (zit+s)]

∣∣∣∣∣ zit, djit = 1, S
(s−1)
it = 1, doi ,Pt

]
(41)

for each individual i and choice j at every period t. Let NS denote the number of simulated

technology paths for each individual at every period and let the superscript ns indicate that

a quantity has being simulated. For individual i and decision j at period t we write the

simulated counterpart of equation (41) as

1

NS

∑
ns

T ∗∑
s=1

βsP
o(s−1),ns
j (zit)Dit+s

(
zns,jit+s

) ∑
k∈Cns,j

t+s

dns,jkit+s

(
zns,jit+s

) [
ykit+s

(
zns,jit+s

)
+ ψkit+s

(
zns,jit+s

)]

=
1

NS

∑
ns

T ∗∑
s=1

βs

(
s∏

τ=1

Dit+τ

(
zns,jit+τ

)) ∑
k∈Cns,j

t+s

dns,jkit+s

(
zns,jit+s

) [
ykit+s

(
zns,jit+s

)
+ ψkit+s

(
zns,jit+s

)]
(42)

For a given vector of parameters of the utility function, the above simulation must be under-

taken NS times for each individual i available at period t, and for all t, and for J−1 choices

as well as for choice o, which means it must be repeated at least NS × T ×N × J . Further,

notice that within each individual simulation we must simulate N optimal paths, one for

every person, in order to obtain the aggregate behavior. In other words, even though we

simulate only NS×T ×N×J technology paths, we simulate NS×T ×N×J×N individual

paths. Given our numbers we will be simulating at most NS×33×1669×6 = NS×330, 462
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technology paths of length T ∗ and NS× 33× 1669× 6× 1669 = NS× 551, 541, 078 individ-

ual paths of length T ∗. Relying on Hotz et al. (1994) we could set NS = 1 and still obtain

consistency. We set NS = 10 after trying different values of NS for robustness.

The sample moment conditions will then be

1∑
i

∑
t δit

N∑
i=1

T∑
t=1

δitw (zit)⊗



...

ln
(
poit(zit)
pjit(zit)

)
+ yjit − yoit

+ 1
NS

∑
ns

∑T∗

s=1 β
s

(
s∏

τ=1
Dit+τ

(
zns,jit+τ

))
×∑

k∈Cns,j
t+s

dns,jkit+s

(
zns,jit+s

) [
ykit+s

(
zns,jit+s

)
+ ψkit+s

(
zns,jit+s

)]
− 1
NS

∑
ns

∑T∗

s=1 β
s

(
s∏

τ=1
Dit+τ

(
zns,oit+τ

))
×∑

k∈Cns,j
t+s

dns,okit+s

(
zns,oit+s

) [
ykit+s

(
zns,oit+s

)
+ ψkit+s

(
zns,oit+s

)]
...



= 0 (43)

where δit is an indicator of availability of individual i at period t. Estimation follows the
simulation strategy described below. Simulation will be undertaken in order to obtain

T∗∑
s=1

βsP
o(s−1)
j (zit)Ez

Dit+s (zit+s)
∑

k∈Ct+s

pikt+s (zit+s) [yikt+s (zit+s) + ψikt+s (zit+s)]

∣∣∣∣∣∣ zit, djit = 1, S
(s−1)
it = 1, doi


(44)

and

T∗∑
s=1

βsP o(s−1)o (zit)Ez

Dit+s (zit+s)
∑

k∈Ct+s

pikt+s (zit+s) [yikt+s (zit+s) + ψikt+s (zit+s)]

∣∣∣∣∣∣ zit, diot = 1, S
(s−1)
it = 1, doi


(45)

for each individual i at every period t. Let the superscript ns indicate that a quantity has

been simulated. Also let subscript j denote the decision made at time t to be compared

against the base choice o.

For individual i at period t who chose j, the simulation algorithm to obtain (44) entails

the following steps for each simulated path ns (again, we set the number of simulated paths

for every data point (i, t) at NS = 1):

1. Number of new products. If s = 1, define MaxChangenst+s−1 ≡ MaxChanget.

Using MaxChangenst+s−1 we draw number of new products, Newnst+s, using a negative

binomial process. First we draw

µ∗t+s ∼ Gamma (1/α, αµt+s)
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where

µt+s = βN0 + βN1 MaxChanget+s−1

Then we draw

Newnst+s
∣∣
µ∗
∼ Poisson

(
µ∗t+s

)
(
α, βN0 , β

N
1

)
are parameters estimated in a first stage.

2. Characteristics of new products. If Newnst+s > 0, for each simulated new product

we obtain simulated product characteristics. Consistent with our model, new products

at t+ s are characterized by simulated realizations of the bivariate random vector

ωt+s−1 + νt+s−1 (46)

where ωt+s−1 is the centroid at t + s − 1, νt+s−1 ∼ Fν and Fν is our innovations

distribution which is estimated non parametrically.

As a by-product of steps 1 and 2 we obtain MaxChangenst+s using equation (23).

3. Exit.

↪→ Overall exit rule. If the ratio of people consuming product k (either by staying

or switching) relative to the number of people consuming a market product falls

bellow σ̃2 during the last 2 consecutive periods (i.e. t+s−1, t+s−2), the product

is withdrawn from the market and cannot be consumed at any τ ≥ t + s. σ̃2 is

chosen as the minimum conditional share observed in the data.

↪→ Switching exit rule. If the product satisfies the overall exit rule or if the ratio of

people switching and being assigned product k relative to the number of people

switching falls bellow σ̃1 during the last 3 consecutive periods (i.e. t + s− 1, t +

s − 2, t + s − 3), the product is no longer available for switchers and therefore

cannot be used to form clusters at any τ ≥ t + s. σ̃1 is chosen as the minimum

conditional share observed in the data. These products may still be used by

“staying” individuals who consumed the product last period.

Old products minus exits plus simulated new products yields the simulated set of

products in period t+ s, Pnst+s.

4. Clusters. From the simulated set of products Pnst+s, we select those products that

can be used for clustering and along with the grouping algorithm we obtain simulated

clusters Gnst+s. We then compute characteristics for the simulated clusters, W ns
t+s.
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5. Centroid. If s = 1 define Pnst+s−1 ≡ Pt. Using the characteristics of products in Pnst+s−1,

unconditional choice probabilities (Ei [pjit+s−1 (zit)]), within-cluster product weights at

t + s − 1, and t + s − 1 shares of products conditional on staying, we compute the

simulated centroid ωnst+s using equation (20).

Steps 1 through 5 provide the aggregate part of the simulated state, zP,nst+s . Denote the

future choice set induced by the simulated evolution of products as Cnst+s.

6. Future state for i. (i) If s = 1, define hnsjit+s−1as the observed hjit+s−1. If s > 1,

draw εh,nsit+s−1 from the non parametric distribution of εh; then, using dnsit+s−1, and when

necessary, the realization of the within cluster treatment assigned at t + s − 1, we

compute simulated health at the beginning of period t + s, hnsjit+s−1, using equation

(34). If dnsit+s−1 involves the trial alternative, trial-product characteristics for computing

equation (34) are drawn from the trial distribution at t + s − 1, Fθ|ωt+s−1 ; which is

equivalent to using equation (46) and the innovations distribution, Fν . (ii) We draw

a simulated out-of-pocket payment shock εo,nsit+s ∼ N (0, σ2
o). (iii) We draw a simulated

labor state lnsit+s using equation (13). (iv) We compute deterministic state variables for

i.

7. Future state for all i′ 6= i. (i) If s = 1, define hnsi′t+s−1as the observed hi′t+s−1. If

1 < s < T ∗, draw εh,nsi′t+s−1 from the non parametric distribution of εh. Then, using

dnsi′t+s−1, and when necessary, the realization of the within cluster treatment assigned

at t+s−1, we compute simulated health at the beginning of period t+s, hnsi′t+s−1, using

equation (34). If dnsi′t+s−1 involves the trial alternative, trial-product characteristics for

computing equation (34) are drawn from the trial distribution at t+s−1, Fθ|ωt+s−1 . We

have deliberately written hnsi′t+s−1 instead of hnsi′jt+s−1 as it is explained below. (ii) We

draw a simulated labor state lnsi′t+s using equation (13). (iii) We compute deterministic

state variables for i′.

Steps 6 and 7 provide the relevant pieces of the individual-specific part of the simulated

state, zo,nsjit+s for i and zo,nsi′t+s for all i′ 6= i.

8. Probability of Survival up to t+ s− 1. If s = 1, by definition, P
o(s−1)
j (zit) = 1 for

all i available at t. If s > 1, using zo,nsjit+s−1, and P
o(s−2),ns
j (zit) we obtain P

o(s−1),ns
j (zit)

using
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P
o(s−1),ns
j (zit) =

s−1∏
τ=1

Dit+τ

(
znsit+τ

)
= Dit+s−1

(
znsjit+s−1

)
P
o(s−2),ns
j (zit) (47)

9. Conditional choice probabilities and simulated choice for i. Using zP,nst+s , zo,nsjit+s,

and equations (36), (38), and (37), we compute simulated t + s ccps, pnsikt+s
(
znsjit+s

)
,

for every alternative k ∈ Cns
t+s. Then, using the simulated ccps we draw a decision

dnsit+s
(
znsjit+s

)
for i.

10. Conditional choice probabilities and simulated choice for all i′ 6= i. Using

zP,nst+s , zo,nsi′t+s for all i′ 6= i, and equations (36), (38), and (37), we compute simulated

t + s ccps, pnsi′kt+s
(
znsi′t+s

)
, for every alternative k ∈ Cns

t+s. Then, using the simulated

ccps we draw a decision dnsi′t+s
(
znsi′t+s

)
for all i′ 6= i.

11. Static payoff for i. (i) We compute m̄s
it+s = Xm,ns

it+s θ
m+νmi using equation (11). Even

though individuals know their idiosyncratic shocks in the income equation, εmit , we do

not need to simulate these as they are iid and have mean zero an enter linearly in the

flow utility, which will result in them averaging out to zero in the moment condition.

(ii) Using the simulated choice dnsit+s
(
znsjit+s

)
we compute expected simulated out-of-

pocket payments using

oit+s
(
dnsit+s

)
=

{
o∗,nsit+s if o∗,nsit+s > 0

0 if o∗,nsit+s ≤ 0

where

o∗,nsit+s

(
dnsit+s

)
= Xo,ns

it+s

(
dnsit+s

)
θo + εo,nsit+s

and Xo,ns
it+s

(
dnsit+s

)
are given in equation (12). Hence

E
[
oit+s

(
dnsit+s

)∣∣ dnsit+s] = Φ
(
Xo,ns
it+s

(
dnsit+s

)
θo/σo

)
Xo,ns
it+s

(
dnsit+s

)
θo+σoφ

(
Xo,ns
it+s

(
dnsit+s

)
θo/σo

)
(iii) We compute the expected probability of no-ailments as

E
[
xit+s| dnsit+s

]
using equation (15) and the relevant distribution: cluster, trial, or degenerate. Notice

that here we exploit again the fact that we observe the underlying stochastic process.
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Whenever the choice is a cluster, we use the within cluster weights. (iv) Using above

components and i’s simulated decision we compute flow payoffs ynsit+s
(
znsit+s, d

ns
it+s

)
using

equation (9). (v) We compute the probability of survival from t + s − 1 into t + s,

Dit+s

(
znsit+s

)
, using equation (17) and the term ψit+s

(
znsit+s, d

ns
it+s

)
using equation (28).

12. Repeat all steps above until s = T ∗.

In order to obtain all other simulated counterparts of (44) for individual i at period t we

do not repeat all the steps above. Instead, we use the same simulated aggregate evolution

of the market and repeat only those steps involving individual i’s path conditional on choice

j′ 6= j at t; this is the reason why we deliberately write hnsi′t+s−1 instead of hnsi′jt+s−1 for all

i 6= i′, as their simulated individual paths do not depend on i’s decision at period t. We

abstain from generating a path of product innovation following counterfactual choice k by

individual i as the impact of his decision at period t on the overall aggregate evolution of

the market is negligible.

When simulating the path following counterfactual choice j′ we need counterfactual

health when s = 1, hnsij′t+s−1; for this we need to compute the realized residuals of the

health equation at t

ε̂hit = hit −
5∑

m=0

αhmh
m
it−1 −

∑
r

θhr δit−1r

Then, using the realized residual ε̂hit and equation (34) we obtain hnsij′t. When individual i is

in a trial in period t we do not observe the characteristics of the trial ex post; hence, we draw

a health shock as well as trial characteristics and compute future simulated health, hnsij′ .

Current period payoffs. On the one hand, in order to obtain yjit we need Ej [xjit+s].

Here, when j corresponds to a cluster alternative, we exploit again the fact that we observe

the underlying stochastic process and use the within cluster weights. On the other hand,

in order to obtain counterfactual yikt we need the realized error term of the out-of-pocket

payment equation at t given by

ε̂oit = o∗jit −Xo
jitθ

o

However, we only observe o∗jit if o∗jit > 0. Hence, if o∗jit ≤ 0, we need to draw a simulated

error εo,nsit from a truncated normal conditional on

εo,nsit ≤ −Xo
jitθ

o

The sample simulated counterpart of (44) is
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1

NS

∑
ns

T∗∑
s=1

βsP
o(s−1),ns
j (zit)Dit+s

(
zns,jit+s

) ∑
k∈Cns,j

t+s

dns,jikt+s

(
zns,jit+s

) [
yikt+s

(
zns,jit+s

)
+ ψikt+s

(
zns,jit+s

)]
(48)

One potential issue with our simulation algorithm is that in reality individuals die and

others become potential consumers. This two phenomena are likely to affect the aggregate

joint distribution of individual characteristics and therefore the ccps and the evolution of

the market. In order to control for death when computing i’s continuation value we could

simulate death conditional on optimal behavior for all i′ 6= i, i.e. some people will leave

the sample in the simulated paths. However, we would also need to create people to be

introduced into the market. We decide to simulate neither people into the absorbing state

nor the stream of people into the sample. Instead, we condition on the aggregate distribution

of characteristics at any period t in order to simulate ahead and on optimal future behavior.22

Also, a related issue is that our sample is refreshed at least once as new subjects are

surveyed. Figures not shown here present no special effect of this refreshing in terms of

the aggregate ccps suggesting that the aggregate distribution of characteristics of the new

surveyed people matches that of the surveyed individuals at the time.

B.3 Estimator

We use a GMM estimator to obtain our structural parameters. DefineB as theK−dimensional

vector of parameters.Following Hotz et al. (1994) we want to obtain the parameter vector

that solves(
(NT )−1

N∑
i=1

T∑
t=1

δitw (zit)⊗ v̄it(zit, B)

)′
Wn

(
(NT )−1

N∑
i=1

T∑
t=1

δitw (zit)⊗ v̄it(zit, B)

)
(49)

22We may need to elaborate here.
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where

v̄it(zit, B) =



...

ln
(
poit(zit)
pjit(zit)

)
+ yjit − yoit

+ 1
NS

∑
ns

∑T ∗

s=1 β
s

(
s∏

τ=1
Dit+τ

(
zns,jit+τ

))
×∑

k∈Cns,j
t+s

dns,jkit+s

(
zns,jit+s

) [
ykit+s

(
zns,jit+s

)
+ ψkit+s

(
zns,jit+s

)]
− 1
NS

∑
ns

∑T ∗

s=1 β
s

(
s∏

τ=1
Dit+τ

(
zns,oit+τ

))
×∑

k∈Cns,j
t+s

dns,okit+s

(
zns,oit+s

) [
ykit+s

(
zns,oit+s

)
+ ψkit+s

(
zns,oit+s

)]
...


and Wn is a square weighting matrix. Using the linear structure of our utility function we

collect and factor terms in order to write the jth component of the vector v̄it(zit, B) as the

linear form

ỹjit − x̃′jitB

Define Y as the [(J − 1)NT × 1]−dimensional vector that stacks all ỹjit, X the matrix of
dimensions [(J − 1)NT ×K] that stacks all x̃jit. Define Z as the [NT ×R]−dimensional
matrix the columns of which contain the R instruments orthogonal to the difference in
alternative representations—which renders Wn as a (J − 1)R−dimensional square matrix.
Finally, let I[J−1] be a (J − 1)−dimensional identity matrix

Y =



ỹ1,1,1

ỹ1,1,2
...

ỹ1,N,T−1

ỹ1,N,T
...

ỹJ−1,1,1

ỹJ−1,1,2
...

ỹJ−1,N,T−1

ỹJ−1,N,T



, X =



x̃1,1,1,1 . . . x̃1,1,1,K

x̃1,1,2,1 . . . x̃1,1,2,K
...

...

x̃1,N,T−1,1 . . . x̃1,N,T−1,K

x̃1,N,T,1 . . . x̃1,N,T,K
...

...

x̃J−1,1,1,1 . . . x̃J−1,1,1,K

x̃J−1,1,2,1 . . . x̃J−1,1,2,K
...

...

x̃J−1,N,T−1,1 . . . x̃J−1,N,T−1,K

x̃J−1,N,T,1 . . . x̃J−1,N,T,K



, Z =


w (z11)1 . . . w (z11)R
w (z12)1 . . . w (z12)R

...
...

w (zNT )1 . . . w (zNT )R



And define
Z̃ = I[J−1] ⊗ Z

Then we can write the objective function in (49) as(
(NT )−1 Z̃ ′ (Y −XB)

)′
Wn

(
(NT )−1 Z̃ ′ (Y −XB)

)
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From where we can obtain a close form solution for B̂ as the optimal GMM estimator. It

entails a first stage estimator given by

B̂1S =
(
X ′Z̃Z̃ ′X

)−1 (
X ′Z̃Z̃ ′Y

)
and a second stage estimator given by

B̂2S =
(
X ′Z̃Ŝ−1Z̃ ′X

)−1 (
X ′Z̃Ŝ−1Z̃ ′Y

)
where

Ŝ =
1

N∗
Z̃ ′DZ̃

and D is the N (J − 1) ×N (J − 1) diagonal matrix with elements û2
jit =

(
yjit − x′jitB̂1S

)2

in its diagonal. The variance-covariance matrix of the second stage estimator is

V̂ 2S = N∗
(
X ′Z̃Ŝ−1Z̃ ′X

)−1

and

N∗ =
N∑
i=1

T∑
t=1

J−1∑
j=1

1 {Decision j available for i at t}

which accounts for the fact that some individuals cannot stay in their lagged treatments at

some periods (for instance, if lagged decision was no treatment or trial treatment).

B.4 CCP Estimation Fit

Figures S1, S2, and S3 display the mean predicted conditional choice probability using equa-

tions (36), (38), (37) and (39) over time against the correspondent share of the population

who chose the alternative. Our ccps map the choices in the data relatively well. In fact, we

further explore the fit of our ccp estimates comparing the relatives shares that clusters re-

ceived in reality against our the predictions from our estimated ccps. We do this by ranking

the three clusters at every period by the share they received and comparing this ranking with

the ranking obtained from our estimated ccps. A cross tabulation of these rankings—not

shown here—suggests that the predicted ranks match the real ranks in more than 79 per-

cent of the periods. In fact, the lowest-ranking cluster matches the predicted lowest-ranking

cluster 88 percent of the times.
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Appendix Figure S1: CCPs Goodness of fit: Stayers

Notes: Figure shows the average estimated conditional choice probability against the share of people choosing the alternative.
Dashed lines represent 95 percent confidence intervals around the predicted conditional choice probabilities. Figure highlights
three periods that are of special relevance in the period we study. It depicts periods during which enrollment into the sample

was undertaken and more importantly, it displays the period in which products belonging to the HAART family were
introduced.

Appendix Figure S2: CCPs Goodness of fit: Trial

Notes: Figure shows the average estimated conditional choice probability against the share of people choosing the alternative.
Dashed lines represent 95 percent confidence intervals around the predicted conditional choice probabilities. Figure highlights
three periods that are of special relevance in the period we study. It depicts periods during which enrollment into the sample

was undertaken and more importantly, it displays the period in which products belonging to the HAART family were
introduced.
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Appendix Figure S3: CCPs Goodness of fit: No Product

Notes: Figure shows the average estimated conditional choice probability against the share of people choosing the alternative.
Dashed lines represent 95 percent confidence intervals around the predicted conditional choice probabilities. Figure highlights
three periods that are of special relevance in the period we study. It depicts periods during which enrollment into the sample

was undertaken and more importantly, it displays the period in which products belonging to the HAART family were
introduced.
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C Proofs

C.1 Proof of Proposition 1

vjit(zit) = yjit + βE [V (zit+1, εit+1) |zit, j]

= yjit + βE

Dit+1 (zit+1)Eε

 ∑
k∈Ct+1

doikt+1 (zit+s) [yikt+s (zit+s) + εikt+1]

 |zit, j


+β2E [Dit+1 (zit+1)V (zit+2, εit+2) |zit, j, doi ]

= yjit + βE

Dit+1 (zit+1)Eε

 ∑
k∈Ct+1

Eε
[
doikt+1 (zit+s) [yikt+s (zit+s) + εikt+1]

∣∣ doikt+1 (zit+s) = 1
] |zit, j


+β2E [Dit+1 (zit+1)V (zit+2, εit+2) |zit, j, doi ]

= yjit + βE

Dit+1 (zit+1)Eε

 ∑
k∈Ct+1

doikt+1 (zit+s)
[
yikt+s (zit+s) + Eε

[
εikt+1| doikt+1 (zit+s) = 1

]] |zit, j


+β2E [Dit+1 (zit+1)V (zit+2, εit+2) |zit, j, doi ]

= yjit + βE

Dit+1 (zit+1)Eε

 ∑
k∈Ct+1

doikt+1 (zit+s) [yikt+s (zit+s) + ψikt+s (zit+s)]

 |zit, j


+β2E [Dit+1 (zit+1)V (zit+2, εit+2) |zit, j, doi ]

= yjit + βE

Dit+1 (zit+1)Eε

 ∑
k∈Ct+1

doikt+1 (zit+1) [yikt+1 (zit+1) + ψikt+1 (zit+1)]

 |zit, j


+β2P
o(2−1)
j (zit)E [V (zit+2, εit+2) |zit, j, Sit+2−1 = 1, doi ]

= yjit

+

T∗∑
s=1

βsP
o(s−1)
j (zit)Ez

Dit+s (zit+s)
∑

k∈Ct+s

pikt+s (zit+s) [yikt+s (zit+s) + ψikt+s (zit+s)]

∣∣∣∣∣∣ zit, j, Sit+s−1 = 1, doi


+βT∗+1P

o(T∗)
j (zit)Ez [Dit+T∗+1 (zit+T∗+1)V (zit+T∗+1, εit+T∗+1)| zit, j, Sit+T∗ = 1, doi ]

That

ψkit (zit) = γ − ln (pkit (zit)) (50)

follows from the joint distribution of the taste shifter εit, which is Extreme Value Type-I.

Q.E.D.
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D Additional Tables and Figures

Appendix Table S5: Health Characteristics of Treatments

(1) (2) (3) (4) (5) (6)

VARIABLES cd4 cd4 cd4 cd4 cd4 cd4

CD4t−1 0.834*** 1.064*** 1.009*** 1.021*** 1.152*** 1.136***

(0.006) (0.013) (0.014) (0.026) (0.032) (0.051)

CD42t−1/103 -0.174*** -0.097*** -0.121** -0.519*** -0.456**

(0.012) (0.018) (0.059) (0.098) (0.212)

CD43t−1/107 -0.274*** -0.112 4.375*** 3.363

(0.060) (0.430) (1.123) (3.518)

CD44t−1/1010 -0.031 -2.016*** -1.288

(0.080) (0.502) (2.598)

CD45t−1/1014 2.803*** 0.482

(0.718) (8.325)

CD46t−1/1018 2.623

(9.398)

DT3 -21.583*** -11.174*** -11.950*** -11.909*** -12.004*** -11.983***

(2.840) (2.707) (2.700) (2.699) (2.697) (2.697)

DT9 -20.319* -19.561* -19.089 -19.165 -19.655* -19.623*

(11.743) (11.879) (11.865) (11.865) (11.861) (11.860)

DT13 -72.170*** -53.988*** -55.512*** -55.437*** -55.796*** -55.726***

(11.798) (12.504) (12.348) (12.364) (12.455) (12.455)

DT14 -15.506** -4.315 -5.164 -5.115 -5.155 -5.140

(6.241) (6.105) (6.100) (6.098) (6.094) (6.094)

DT33 -21.629** 0.985 -2.034 -1.689 -0.017 -0.112

(9.038) (9.161) (9.112) (9.123) (9.108) (9.113)

DT34 -21.810*** -12.450*** -13.310*** -13.219*** -12.752*** -12.779***

(4.900) (4.755) (4.761) (4.764) (4.764) (4.765)

DT39 -31.246*** -15.492*** -17.057*** -16.924*** -16.615*** -16.607***

(5.805) (5.715) (5.691) (5.691) (5.687) (5.688)

DT46 7.741* 15.348*** 14.581*** 14.678*** 15.263*** 15.229***

(4.679) (4.566) (4.577) (4.581) (4.574) (4.573)

DT47 -34.371*** -15.583** -17.510** -17.327** -16.474** -16.521**

(7.318) (7.033) (7.027) (7.028) (7.040) (7.037)

DT51 -22.630*** -3.664 -6.022 -5.740 -4.159 -4.252

(7.962) (7.693) (7.690) (7.693) (7.669) (7.670)

DT63 -16.743 2.384 -0.183 0.162 2.415 2.275

(14.637) (13.594) (13.649) (13.659) (13.746) (13.735)

DT64 -37.988*** -17.449* -19.583** -19.387** -18.630** -18.656**

(8.900) (9.076) (8.991) (8.996) (9.035) (9.032)

DT65 -27.913*** -12.409* -13.823** -13.704* -13.186* -13.220*

(7.203) (7.007) (7.006) (7.006) (6.993) (6.994)

DT67 -50.755*** -31.179** -33.087** -32.938** -32.700** -32.673**

(15.300) (14.998) (14.986) (14.990) (15.052) (15.044)

DT69 -26.741* -11.827 -13.331 -13.215 -13.351 -13.275

(14.379) (13.908) (13.950) (13.945) (13.973) (13.973)

DT85 34.619*** 40.457*** 39.721*** 39.790*** 39.776*** 39.792***

(6.424) (6.319) (6.311) (6.308) (6.299) (6.299)

DT117 33.323*** 42.736*** 41.910*** 41.991*** 42.267*** 42.277***

(12.098) (11.819) (11.837) (11.834) (11.819) (11.818)

DT124 33.711*** 33.910*** 33.804*** 33.864*** 34.398*** 34.364***
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(6.284) (6.229) (6.234) (6.235) (6.227) (6.228)

DT146 27.752* 34.323** 33.694** 33.761** 33.792** 33.831**

(14.796) (14.611) (14.644) (14.639) (14.625) (14.625)

DT157 34.353*** 37.455*** 37.258*** 37.282*** 37.173*** 37.208***

(6.945) (6.861) (6.862) (6.862) (6.856) (6.857)

DT161 33.496** 38.559*** 38.364*** 38.340*** 38.283*** 38.259***

(13.411) (13.215) (13.201) (13.205) (13.193) (13.198)

DT164 55.089** 64.825** 64.314** 64.302** 63.734** 63.798**

(27.560) (27.365) (27.365) (27.370) (27.414) (27.419)

DT165 60.168*** 64.722*** 65.220*** 65.337*** 65.041*** 65.045***

(7.077) (6.246) (6.215) (6.225) (6.220) (6.222)

DT169 33.129** 34.545** 34.182** 34.289** 35.032** 35.012**

(16.388) (16.316) (16.316) (16.317) (16.339) (16.334)

DT171 73.104*** 78.825*** 78.453*** 78.478*** 78.559*** 78.548***

(17.682) (18.040) (18.017) (18.010) (17.950) (17.943)

DT175 44.728*** 52.470*** 52.730*** 52.619*** 53.128*** 53.153***

(8.770) (8.233) (8.202) (8.198) (8.176) (8.172)

DT185 50.899*** 58.842*** 57.833*** 57.922*** 57.776*** 57.825***

(12.661) (12.659) (12.642) (12.638) (12.608) (12.608)

DT202 32.648** 32.522** 33.226** 33.107** 32.286** 32.338**

(14.544) (14.584) (14.576) (14.576) (14.573) (14.574)

DT214 33.330*** 33.541*** 34.154*** 34.057*** 33.510*** 33.535***

(12.245) (12.162) (12.166) (12.164) (12.163) (12.161)

DT236 48.886*** 46.186*** 46.239*** 46.267*** 46.275*** 46.281***

(7.172) (7.130) (7.121) (7.123) (7.123) (7.124)

DT242 47.980*** 46.484*** 46.110*** 46.240*** 46.846*** 46.863***

(9.266) (9.144) (9.154) (9.160) (9.161) (9.162)

DT254 42.775*** 42.587*** 42.568*** 42.601*** 42.631*** 42.656***

(13.502) (13.436) (13.444) (13.443) (13.446) (13.445)

DT268 47.316*** 52.474*** 51.249*** 51.353*** 50.776*** 50.855***

(10.457) (10.436) (10.415) (10.407) (10.417) (10.415)

DT292 42.030*** 48.796*** 48.057*** 48.109*** 48.018*** 48.069***

(10.638) (10.242) (10.225) (10.230) (10.212) (10.215)

DT311 39.770* 50.740** 49.168** 49.215** 47.816** 47.922**

(23.206) (22.720) (22.698) (22.709) (22.774) (22.780)

DT349 50.575*** 42.467** 43.413** 43.408** 44.240*** 44.156***

(16.958) (17.083) (17.108) (17.098) (17.046) (17.046)

DT377 56.809*** 57.778*** 57.727*** 57.716*** 57.227*** 57.259***

(19.614) (19.566) (19.530) (19.538) (19.552) (19.555)

DT532 49.321*** 47.631*** 47.537*** 47.614*** 47.978*** 47.990***

(10.952) (10.886) (10.899) (10.899) (10.893) (10.892)

DT548 45.842*** 43.345*** 43.281*** 43.348*** 43.526*** 43.551***

(5.368) (5.331) (5.329) (5.330) (5.327) (5.329)

DT573 40.314*** 39.595*** 39.432*** 39.485*** 39.379*** 39.426***

(10.981) (10.960) (10.901) (10.909) (10.919) (10.922)

DT581 19.612 18.387 18.413 18.417 17.866 17.935

(14.499) (14.316) (14.341) (14.341) (14.376) (14.378)

DT615 44.239*** 40.856*** 41.087*** 41.122*** 41.280*** 41.301***

(11.769) (11.592) (11.603) (11.604) (11.622) (11.622)

DT644 54.543*** 53.883*** 53.615*** 53.650*** 53.341*** 53.368***

(8.639) (8.512) (8.504) (8.505) (8.516) (8.515)

DT701 52.853*** 55.916*** 54.878*** 54.997*** 54.824*** 54.870***

(11.144) (10.997) (10.979) (10.975) (10.999) (11.003)

DT720 60.713*** 79.231*** 78.995*** 78.688*** 78.914*** 78.726***

(13.046) (14.550) (14.500) (14.464) (14.412) (14.405)
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DT782 28.143* 35.924** 35.177** 35.267** 35.611** 35.633**

(15.627) (14.945) (14.959) (14.967) (15.077) (15.068)

DT869 50.005*** 50.037*** 49.904*** 49.946*** 49.838*** 49.885***

(13.110) (12.947) (12.940) (12.946) (12.997) (12.999)

DT909 27.964** 33.525*** 33.367*** 33.310*** 32.227*** 32.320***

(10.898) (10.827) (10.764) (10.781) (10.842) (10.846)

DT919 47.628*** 48.846*** 48.522*** 48.536*** 47.617*** 47.722***

(13.308) (13.619) (13.486) (13.499) (13.453) (13.466)

DT921 15.458 18.929 19.116 19.058 19.273 19.286

(16.086) (14.468) (14.426) (14.448) (14.327) (14.341)

DT923 30.619* 26.759 26.896 26.960 27.246 27.283

(17.077) (16.964) (16.951) (16.954) (16.971) (16.973)

DT926 47.776*** 47.965*** 47.952*** 47.971*** 47.790*** 47.835***

(10.277) (9.953) (9.995) (9.993) (10.024) (10.021)

DT940 54.575*** 50.873*** 50.705*** 50.821*** 51.570*** 51.537***

(15.098) (15.196) (15.198) (15.195) (15.164) (15.163)

DT949 53.752*** 50.921*** 51.203*** 51.236*** 51.672*** 51.661***

(11.818) (11.668) (11.706) (11.701) (11.705) (11.701)

DT963 37.095*** 30.953** 31.641** 31.628** 31.845** 31.829**

(12.997) (13.013) (13.021) (13.019) (13.014) (13.015)

DT976 -7.655 2.510 2.487 2.349 2.381 2.436

(20.271) (17.213) (16.922) (16.980) (16.471) (16.507)

DT987 4.115 10.199 9.583 9.654 9.855 9.870

(14.474) (14.526) (14.496) (14.498) (14.503) (14.500)

DT994 10.625 15.088 15.225 15.171 14.891 14.893

(17.109) (17.416) (17.404) (17.396) (17.282) (17.291)

DT1010 12.409 20.292** 19.891** 19.906** 19.980** 19.966**

(9.769) (9.701) (9.687) (9.686) (9.676) (9.676)

DT1011 43.817* 39.067* 38.498* 38.691* 39.457* 39.484*

(22.599) (22.024) (22.150) (22.142) (22.163) (22.157)

DT1020 20.973 17.603 18.253 18.220 18.396 18.375

(13.204) (13.121) (13.141) (13.135) (13.111) (13.111)

DT1071 58.721*** 53.880*** 54.012*** 54.094*** 54.798*** 54.796***

(4.578) (4.475) (4.469) (4.478) (4.453) (4.453)

DT1128 40.782*** 37.265*** 37.397*** 37.415*** 37.227*** 37.246***

(9.919) (9.662) (9.682) (9.683) (9.722) (9.720)

DT1222 53.239*** 52.943*** 52.719*** 52.793*** 53.028*** 53.050***

(5.409) (5.301) (5.306) (5.307) (5.309) (5.310)

DT1227 83.132*** 85.565*** 84.437*** 84.556*** 83.823*** 83.917***

(20.468) (21.138) (21.037) (21.031) (20.842) (20.859)

DT1230 25.312** 27.037** 27.504** 27.416** 26.850** 26.886**

(12.040) (12.112) (12.093) (12.093) (12.079) (12.081)

DT1245 37.822*** 38.379*** 38.357*** 38.374*** 38.313*** 38.336***

(13.418) (13.334) (13.326) (13.328) (13.347) (13.347)

DT1253 46.066*** 46.654*** 46.213*** 46.319*** 46.723*** 46.735***

(7.946) (7.735) (7.745) (7.747) (7.767) (7.765)

DT1303 51.942*** 46.893*** 47.631*** 47.602*** 47.800*** 47.786***

(16.434) (16.225) (16.276) (16.269) (16.284) (16.279)

DT1342 32.840** 29.637** 30.481** 30.395** 30.226** 30.204**

(14.069) (14.124) (14.137) (14.132) (14.115) (14.116)

DT10006 -29.515 -21.709 -22.258 -22.209 -21.950 -21.961

(19.930) (20.278) (20.256) (20.251) (20.191) (20.194)

DT10026 64.425*** 66.829*** 65.194*** 65.444*** 65.353*** 65.496***

(24.136) (22.649) (22.765) (22.778) (23.021) (23.023)

DT10027 0.210 7.741 7.165 7.179 6.457 6.562
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(14.742) (14.802) (14.701) (14.715) (14.739) (14.748)

DT10028 26.450 32.481 31.616 31.629 30.293 30.414

(19.796) (20.521) (20.367) (20.371) (20.276) (20.282)

DT10030 20.031 19.261 19.703 19.654 19.278 19.315

(17.621) (17.572) (17.592) (17.586) (17.546) (17.548)

DT10031 34.205** 29.830** 30.781** 30.712** 31.044** 30.969**

(15.053) (14.878) (14.911) (14.901) (14.838) (14.843)

DT10035 44.294*** 43.738*** 43.648*** 43.682*** 43.495*** 43.550***

(15.320) (15.368) (15.337) (15.340) (15.357) (15.356)

DT10037 28.525*** 28.144*** 28.115*** 28.134*** 27.893** 27.931**

(11.035) (10.856) (10.855) (10.857) (10.893) (10.892)

DT10038 48.755*** 44.792*** 44.735*** 44.855*** 45.683*** 45.679***

(13.769) (13.693) (13.692) (13.695) (13.673) (13.674)

DT10040 26.314*** 28.505*** 28.742*** 28.692*** 28.440*** 28.431***

(8.531) (8.329) (8.333) (8.335) (8.334) (8.337)

DT10041 43.028*** 41.990*** 42.154*** 42.158*** 42.050*** 42.074***

(12.657) (12.467) (12.470) (12.470) (12.474) (12.473)

DT10042 30.254** 32.127** 31.743** 31.779** 31.824** 31.811**

(12.900) (13.008) (13.007) (12.996) (12.924) (12.922)

DT10043 28.589** 26.499** 26.919** 26.894** 26.678** 26.715**

(12.874) (12.711) (12.704) (12.707) (12.739) (12.739)

DT10046 36.196*** 32.318** 32.455** 32.517** 32.865** 32.884**

(13.618) (13.720) (13.651) (13.662) (13.672) (13.678)

DT10048 33.017** 33.618** 33.783** 33.756** 33.352** 33.394**

(15.278) (14.856) (14.884) (14.888) (14.943) (14.943)

DT10049 49.474*** 47.695*** 48.034*** 48.005*** 47.736*** 47.760***

(11.002) (10.687) (10.698) (10.703) (10.757) (10.753)

DT10050 38.954** 38.166** 38.394** 38.415** 38.933** 38.887**

(17.897) (18.043) (18.036) (18.037) (18.096) (18.090)

Constant 56.819*** -2.797 6.623** 5.233 -5.874* -4.898

(3.161) (3.411) (3.018) (3.432) (3.313) (3.681)

Observations 33,258 33,258 33,258 33,258 33,258 33,258

R-squared 0.728 0.736 0.736 0.736 0.736 0.736

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
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Appendix Table S6: No Ailments Characteristics of Treatments

(1) (2) (3) (4) (5) (6)

VARIABLES NoSfx NoSfx NoSfx NoSfx NoSfx NoSfx

CD4t−1 0.001*** 0.003*** 0.005*** 0.006*** 0.008*** 0.009***

(0.000) (0.000) (0.000) (0.000) (0.001) (0.001)

CD42t−1/103 -0.001*** -0.005*** -0.007*** -0.013*** -0.017***

(0.000) (0.001) (0.001) (0.002) (0.003)

CD43t−1/107 0.013*** 0.033*** 0.109*** 0.166***

(0.003) (0.004) (0.019) (0.040)

CD44t−1/1010 -0.005*** -0.040*** -0.084***

(0.001) (0.010) (0.028)

CD45t−1/1014 0.054*** 0.203**

(0.016) (0.092)

CD46t−1/1018 -0.186*

(0.106)

DT3 -0.576*** -0.515*** -0.500*** -0.498*** -0.500*** -0.501***

(0.040) (0.041) (0.041) (0.041) (0.041) (0.041)

DT9 -0.402* -0.404* -0.421** -0.427** -0.433** -0.434**

(0.208) (0.212) (0.213) (0.213) (0.212) (0.212)

DT13 -0.738*** -0.627** -0.594** -0.593** -0.600** -0.603**

(0.260) (0.259) (0.260) (0.260) (0.260) (0.260)

DT14 -0.523*** -0.457*** -0.439*** -0.437*** -0.439*** -0.439***

(0.099) (0.100) (0.100) (0.101) (0.101) (0.101)

DT33 -1.039*** -0.900*** -0.819*** -0.799*** -0.783*** -0.781***

(0.127) (0.128) (0.130) (0.130) (0.131) (0.132)

DT34 -0.622*** -0.569*** -0.549*** -0.544*** -0.539*** -0.538***

(0.079) (0.079) (0.080) (0.080) (0.080) (0.081)

DT39 -0.713*** -0.618*** -0.580*** -0.573*** -0.571*** -0.571***

(0.105) (0.106) (0.107) (0.108) (0.108) (0.108)

DT46 -0.457*** -0.411*** -0.390*** -0.383*** -0.375*** -0.374***

(0.069) (0.070) (0.070) (0.071) (0.071) (0.071)

DT47 -1.016*** -0.907*** -0.866*** -0.858*** -0.851*** -0.850***

(0.157) (0.159) (0.162) (0.162) (0.163) (0.163)

DT51 -0.577*** -0.456*** -0.388** -0.369** -0.348** -0.344**

(0.161) (0.164) (0.166) (0.167) (0.168) (0.168)

DT63 -0.567** -0.445 -0.367 -0.341 -0.310 -0.304

(0.269) (0.274) (0.280) (0.282) (0.284) (0.285)

DT64 -0.566*** -0.436** -0.379* -0.367* -0.358 -0.357

(0.210) (0.213) (0.218) (0.220) (0.222) (0.222)

DT65 -0.650*** -0.557*** -0.525*** -0.519*** -0.514*** -0.512***

(0.133) (0.133) (0.135) (0.135) (0.136) (0.137)

DT67 -1.582*** -1.473*** -1.439*** -1.436*** -1.440*** -1.442***

(0.306) (0.303) (0.305) (0.306) (0.307) (0.307)

DT69 -0.916*** -0.827*** -0.790*** -0.785*** -0.789*** -0.793***

(0.261) (0.261) (0.262) (0.263) (0.263) (0.264)

DT85 -0.772*** -0.737*** -0.718*** -0.715*** -0.717*** -0.718***

(0.091) (0.091) (0.091) (0.092) (0.092) (0.092)

DT117 -0.609*** -0.555*** -0.535** -0.530** -0.527** -0.528**

(0.205) (0.208) (0.210) (0.211) (0.212) (0.212)

DT124 0.036 0.040 0.050 0.055 0.064 0.065

(0.093) (0.094) (0.094) (0.094) (0.094) (0.094)

DT146 -0.568** -0.530** -0.513** -0.509** -0.509** -0.511**

(0.223) (0.226) (0.227) (0.227) (0.227) (0.227)

84



DT157 -0.132 -0.111 -0.103 -0.102 -0.104 -0.105

(0.112) (0.113) (0.114) (0.114) (0.114) (0.114)

DT161 -0.302* -0.270 -0.270 -0.272 -0.271 -0.270

(0.180) (0.182) (0.182) (0.182) (0.182) (0.182)

DT164 -0.532*** -0.475** -0.468** -0.471** -0.479** -0.482**

(0.184) (0.185) (0.186) (0.187) (0.187) (0.187)

DT165 -0.106 -0.084 -0.078 -0.073 -0.075 -0.076

(0.080) (0.081) (0.081) (0.081) (0.081) (0.081)

DT169 -0.604** -0.600** -0.585** -0.577** -0.567** -0.566**

(0.244) (0.246) (0.248) (0.249) (0.250) (0.250)

DT171 -0.342* -0.308 -0.299 -0.297 -0.295 -0.295

(0.190) (0.195) (0.197) (0.198) (0.199) (0.199)

DT175 -0.424*** -0.377*** -0.399*** -0.402*** -0.395*** -0.397***

(0.099) (0.100) (0.100) (0.100) (0.100) (0.100)

DT185 -0.671*** -0.621*** -0.592*** -0.588*** -0.591*** -0.594***

(0.174) (0.175) (0.176) (0.176) (0.177) (0.177)

DT202 0.003 -0.002 -0.027 -0.036 -0.048 -0.050

(0.226) (0.227) (0.228) (0.228) (0.229) (0.229)

DT214 -0.720*** -0.730*** -0.754*** -0.761*** -0.767*** -0.768***

(0.267) (0.268) (0.269) (0.269) (0.269) (0.268)

DT236 0.125 0.107 0.109 0.110 0.109 0.109

(0.112) (0.112) (0.112) (0.111) (0.111) (0.111)

DT242 -0.415*** -0.425*** -0.403*** -0.393*** -0.386*** -0.387***

(0.121) (0.120) (0.121) (0.120) (0.121) (0.121)

DT254 -0.446*** -0.450*** -0.447*** -0.444*** -0.444*** -0.445***

(0.160) (0.159) (0.159) (0.159) (0.160) (0.160)

DT268 -0.508*** -0.466*** -0.426*** -0.423*** -0.432*** -0.436***

(0.122) (0.122) (0.122) (0.122) (0.122) (0.122)

DT292 -0.941*** -0.900*** -0.882*** -0.879*** -0.881*** -0.883***

(0.128) (0.130) (0.130) (0.130) (0.130) (0.130)

DT311 -0.913*** -0.830*** -0.785*** -0.788*** -0.810*** -0.813***

(0.214) (0.213) (0.214) (0.213) (0.213) (0.213)

DT349 0.809** 0.756** 0.736** 0.740** 0.753** 0.757**

(0.332) (0.327) (0.325) (0.324) (0.324) (0.325)

DT377 -1.043*** -1.040*** -1.039*** -1.041*** -1.049*** -1.050***

(0.219) (0.220) (0.219) (0.220) (0.220) (0.220)

DT532 -0.353** -0.366** -0.356** -0.350** -0.346** -0.346**

(0.146) (0.148) (0.149) (0.149) (0.149) (0.149)

DT548 0.340*** 0.327*** 0.337*** 0.341*** 0.342*** 0.341***

(0.084) (0.085) (0.085) (0.085) (0.085) (0.085)

DT573 0.031 0.027 0.038 0.040 0.038 0.036

(0.233) (0.231) (0.232) (0.233) (0.235) (0.235)

DT581 -0.454** -0.463** -0.460** -0.462** -0.470*** -0.473***

(0.181) (0.180) (0.180) (0.180) (0.180) (0.179)

DT615 -0.605*** -0.631*** -0.632*** -0.628*** -0.626*** -0.627***

(0.163) (0.164) (0.164) (0.164) (0.163) (0.163)

DT644 0.106 0.102 0.113 0.113 0.108 0.107

(0.128) (0.126) (0.125) (0.125) (0.125) (0.125)

DT701 -0.508*** -0.481*** -0.444*** -0.438*** -0.442*** -0.444***

(0.127) (0.128) (0.128) (0.128) (0.128) (0.128)

DT720 0.263 0.387** 0.349* 0.337* 0.348* 0.355*

(0.190) (0.181) (0.186) (0.188) (0.186) (0.185)

DT782 -0.393 -0.345 -0.321 -0.315 -0.310 -0.311

(0.262) (0.265) (0.269) (0.270) (0.271) (0.271)

DT869 -0.661*** -0.664*** -0.656*** -0.653*** -0.655*** -0.657***
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(0.183) (0.183) (0.182) (0.181) (0.180) (0.180)

DT909 -0.560*** -0.528*** -0.530*** -0.537*** -0.552*** -0.556***

(0.197) (0.196) (0.194) (0.193) (0.193) (0.193)

DT919 -0.974*** -0.966*** -0.951*** -0.952*** -0.966*** -0.971***

(0.274) (0.268) (0.261) (0.260) (0.261) (0.262)

DT921 -0.659*** -0.641*** -0.656*** -0.657*** -0.652*** -0.653***

(0.204) (0.207) (0.206) (0.206) (0.205) (0.205)

DT923 -0.244 -0.270 -0.266 -0.261 -0.258 -0.260

(0.212) (0.213) (0.214) (0.214) (0.214) (0.214)

DT926 -0.015 -0.013 -0.009 -0.008 -0.011 -0.013

(0.153) (0.153) (0.153) (0.153) (0.154) (0.154)

DT940 -0.940*** -0.967*** -0.952*** -0.943*** -0.934*** -0.933***

(0.207) (0.206) (0.207) (0.208) (0.208) (0.208)

DT949 -0.081 -0.100 -0.102 -0.098 -0.092 -0.092

(0.171) (0.173) (0.174) (0.174) (0.174) (0.174)

DT963 -0.251 -0.296* -0.311* -0.311* -0.308* -0.307*

(0.178) (0.179) (0.179) (0.179) (0.178) (0.178)

DT976 -0.463* -0.396 -0.418 -0.422* -0.420* -0.424*

(0.253) (0.259) (0.255) (0.254) (0.253) (0.253)

DT987 0.214 0.262 0.287 0.294 0.298 0.297

(0.260) (0.266) (0.271) (0.272) (0.274) (0.275)

DT994 -0.814*** -0.798*** -0.813*** -0.817*** -0.820*** -0.820***

(0.244) (0.246) (0.248) (0.248) (0.249) (0.249)

DT1010 -0.778*** -0.739*** -0.738*** -0.739*** -0.738*** -0.738***

(0.209) (0.212) (0.214) (0.215) (0.215) (0.215)

DT1011 -0.793*** -0.820*** -0.785*** -0.770*** -0.762*** -0.763***

(0.279) (0.279) (0.276) (0.275) (0.275) (0.275)

DT1020 -0.234 -0.261 -0.278 -0.279 -0.276 -0.275

(0.240) (0.237) (0.238) (0.238) (0.239) (0.239)

DT1071 0.129* 0.098 0.102 0.110 0.118* 0.118*

(0.066) (0.067) (0.067) (0.067) (0.067) (0.067)

DT1128 -0.178 -0.203 -0.202 -0.202 -0.205 -0.205

(0.134) (0.134) (0.133) (0.133) (0.132) (0.132)

DT1222 0.114 0.116 0.130 0.135 0.138 0.137

(0.088) (0.089) (0.090) (0.090) (0.090) (0.090)

DT1227 0.254 0.275 0.315 0.318 0.306 0.303

(0.310) (0.311) (0.310) (0.309) (0.309) (0.310)

DT1230 -0.040 -0.032 -0.048 -0.054 -0.061 -0.063

(0.209) (0.211) (0.211) (0.211) (0.210) (0.210)

DT1245 -0.406** -0.405** -0.403* -0.402* -0.403* -0.404*

(0.204) (0.205) (0.206) (0.207) (0.208) (0.208)

DT1253 -0.223* -0.217 -0.196 -0.189 -0.183 -0.184

(0.133) (0.134) (0.134) (0.134) (0.135) (0.135)

DT1303 0.101 0.065 0.047 0.046 0.049 0.049

(0.251) (0.255) (0.255) (0.254) (0.252) (0.251)

DT1342 -0.310 -0.339* -0.366* -0.371* -0.372* -0.371*

(0.194) (0.197) (0.199) (0.199) (0.199) (0.199)

DT10006 -1.059*** -1.025*** -1.020*** -1.019*** -1.017*** -1.017***

(0.260) (0.266) (0.269) (0.269) (0.269) (0.269)

DT10026 -0.153 -0.126 -0.062 -0.048 -0.054 -0.061

(0.332) (0.330) (0.324) (0.323) (0.325) (0.326)

DT10027 0.010 0.063 0.080 0.079 0.068 0.063

(0.291) (0.288) (0.285) (0.285) (0.285) (0.285)

DT10028 -0.735*** -0.690*** -0.665** -0.669** -0.689*** -0.694***

(0.268) (0.267) (0.264) (0.263) (0.261) (0.262)
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DT10030 -1.082*** -1.099*** -1.114*** -1.117*** -1.121*** -1.123***

(0.276) (0.277) (0.278) (0.279) (0.279) (0.279)

DT10031 -0.631** -0.671** -0.701** -0.704** -0.697** -0.693**

(0.291) (0.300) (0.303) (0.303) (0.302) (0.301)

DT10035 -0.411* -0.416* -0.409* -0.407* -0.410* -0.413*

(0.242) (0.242) (0.243) (0.243) (0.243) (0.243)

DT10037 -0.462*** -0.467*** -0.463*** -0.463*** -0.467*** -0.468***

(0.170) (0.172) (0.173) (0.173) (0.173) (0.172)

DT10038 -1.266*** -1.301*** -1.287*** -1.277*** -1.265*** -1.266***

(0.231) (0.233) (0.232) (0.231) (0.230) (0.230)

DT10040 -0.452*** -0.445*** -0.458*** -0.462*** -0.465*** -0.465***

(0.164) (0.165) (0.166) (0.166) (0.167) (0.167)

DT10041 -0.597*** -0.609*** -0.611*** -0.611*** -0.612*** -0.613***

(0.228) (0.229) (0.229) (0.229) (0.229) (0.229)

DT10042 -0.694*** -0.681*** -0.668*** -0.666*** -0.665*** -0.664***

(0.190) (0.193) (0.193) (0.192) (0.191) (0.191)

DT10043 -0.178 -0.194 -0.205 -0.206 -0.210 -0.212

(0.225) (0.226) (0.226) (0.226) (0.226) (0.226)

DT10046 0.084 0.060 0.064 0.068 0.072 0.071

(0.327) (0.328) (0.327) (0.326) (0.325) (0.324)

DT10048 0.042 0.046 0.042 0.039 0.032 0.030

(0.233) (0.234) (0.234) (0.234) (0.234) (0.234)

DT10049 -0.191 -0.206 -0.215 -0.217 -0.221 -0.222

(0.167) (0.168) (0.168) (0.167) (0.167) (0.167)

DT10050 -0.375 -0.386 -0.390* -0.387 -0.379 -0.377

(0.231) (0.235) (0.236) (0.236) (0.236) (0.236)

Constant 0.091*** -0.320*** -0.638*** -0.754*** -0.929*** -0.981***

(0.031) (0.045) (0.065) (0.057) (0.067) (0.073)

Observations 33,258 33,258 33,258 33,258 33,258 33,258

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
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